Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries

With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn 2 O 4 and LiFePO 4 cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2021-12, Vol.27 (12), p.5021-5035
Hauptverfasser: Yu, Lele, Tian, Yexing, Xing, Yiran, Hou, Chen, Si, Yongheng, Lu, Han, Zhao, Yujuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5035
container_issue 12
container_start_page 5021
container_title Ionics
container_volume 27
creator Yu, Lele
Tian, Yexing
Xing, Yiran
Hou, Chen
Si, Yongheng
Lu, Han
Zhao, Yujuan
description With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn 2 O 4 and LiFePO 4 cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free systems. The cells were dismantled to study the electrode structure, surface morphology, and compositional changes. The study shows that LiMn 2 O 4 and LiFePO 4 still maintain good crystal morphology during the deep over-discharge process, showing better over-discharge resistance capability with different overlithiation mechanisms. As shown by X-ray diffraction and X-ray photoelectron spectroscopy with Ar-ion etching, the new phase, Li 2 Mn 2 O 4 , appears starting from 2.5 V. Until the voltage is less than 0.2 V, the framework structures of LiMn 2 O 4 are deteriorated, and further overlithiation caused decomposition into Li 2 MnO 2 and Li 2 O. LiFePO 4 essentially maintains its olivine-type structure, but below 0.2 V, direct overlithiation causes decomposition into Li 2 O and Fe metal. Furthermore, overlithiated decomposition of LiMn 2 O 4 and LiFePO 4 occurs at very low voltages approximately 0.43 and 0.56 V, respectively. Additionally, the deep over-discharge also leads to the decay of the electrolyte structure, associated with LiF, Li 2 CO 3 and Li x PO y F z by-products. The detailed overlithiation mechanism will provide important theoretical guidance for practical applications.
doi_str_mv 10.1007/s11581-021-04211-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595137140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595137140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e6d592ee9354a341627150e173e61383614f81c25f9c4949b33fb38e75412d643</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA5-jOfiZHKVaFSj3Ym7Bs00mbkmzqbtLiv3fbCN48DDOH93kHHkJugd4DpfohAMgMUsriCAaQHs7ICDLFUqoVPScjmgudair0JbkKYUupUsD0iHwunLd7rCu3TroNJu0efV11m8p2VeuSBouNdVVokrZMZtWbY3ORWLeK9xTf492HI3ki-iZtsLN1srRdh77CcE0uSlsHvPndY7KYPn1MXtLZ_Pl18jhLCw55l6JayZwh5lwKywUopkFSBM1RAc-4AlFmUDBZ5oXIRb7kvFzyDLUUwFZK8DG5G3p3vv3qMXRm2_bexZeGyVwC1yBoTLEhVfg2BI-l2fmqsf7bADVHi2awaKJFc7JoDhHiAxRi2K3R_1X_Q_0AOlVz9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595137140</pqid></control><display><type>article</type><title>Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries</title><source>SpringerNature Complete Journals</source><creator>Yu, Lele ; Tian, Yexing ; Xing, Yiran ; Hou, Chen ; Si, Yongheng ; Lu, Han ; Zhao, Yujuan</creator><creatorcontrib>Yu, Lele ; Tian, Yexing ; Xing, Yiran ; Hou, Chen ; Si, Yongheng ; Lu, Han ; Zhao, Yujuan</creatorcontrib><description>With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn 2 O 4 and LiFePO 4 cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free systems. The cells were dismantled to study the electrode structure, surface morphology, and compositional changes. The study shows that LiMn 2 O 4 and LiFePO 4 still maintain good crystal morphology during the deep over-discharge process, showing better over-discharge resistance capability with different overlithiation mechanisms. As shown by X-ray diffraction and X-ray photoelectron spectroscopy with Ar-ion etching, the new phase, Li 2 Mn 2 O 4 , appears starting from 2.5 V. Until the voltage is less than 0.2 V, the framework structures of LiMn 2 O 4 are deteriorated, and further overlithiation caused decomposition into Li 2 MnO 2 and Li 2 O. LiFePO 4 essentially maintains its olivine-type structure, but below 0.2 V, direct overlithiation causes decomposition into Li 2 O and Fe metal. Furthermore, overlithiated decomposition of LiMn 2 O 4 and LiFePO 4 occurs at very low voltages approximately 0.43 and 0.56 V, respectively. Additionally, the deep over-discharge also leads to the decay of the electrolyte structure, associated with LiF, Li 2 CO 3 and Li x PO y F z by-products. The detailed overlithiation mechanism will provide important theoretical guidance for practical applications.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-04211-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cathodes ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal morphology ; Decomposition ; Discharge ; Electrochemistry ; Electrode materials ; Electrolytic cells ; Energy Storage ; Ion etching ; Iron ; Lithium ; Lithium fluoride ; Lithium manganese oxides ; Lithium oxides ; Morphology ; Olivine ; Optical and Electronic Materials ; Original Paper ; Photoelectrons ; Renewable and Green Energy</subject><ispartof>Ionics, 2021-12, Vol.27 (12), p.5021-5035</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e6d592ee9354a341627150e173e61383614f81c25f9c4949b33fb38e75412d643</citedby><cites>FETCH-LOGICAL-c319t-e6d592ee9354a341627150e173e61383614f81c25f9c4949b33fb38e75412d643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-021-04211-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-021-04211-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yu, Lele</creatorcontrib><creatorcontrib>Tian, Yexing</creatorcontrib><creatorcontrib>Xing, Yiran</creatorcontrib><creatorcontrib>Hou, Chen</creatorcontrib><creatorcontrib>Si, Yongheng</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Zhao, Yujuan</creatorcontrib><title>Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn 2 O 4 and LiFePO 4 cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free systems. The cells were dismantled to study the electrode structure, surface morphology, and compositional changes. The study shows that LiMn 2 O 4 and LiFePO 4 still maintain good crystal morphology during the deep over-discharge process, showing better over-discharge resistance capability with different overlithiation mechanisms. As shown by X-ray diffraction and X-ray photoelectron spectroscopy with Ar-ion etching, the new phase, Li 2 Mn 2 O 4 , appears starting from 2.5 V. Until the voltage is less than 0.2 V, the framework structures of LiMn 2 O 4 are deteriorated, and further overlithiation caused decomposition into Li 2 MnO 2 and Li 2 O. LiFePO 4 essentially maintains its olivine-type structure, but below 0.2 V, direct overlithiation causes decomposition into Li 2 O and Fe metal. Furthermore, overlithiated decomposition of LiMn 2 O 4 and LiFePO 4 occurs at very low voltages approximately 0.43 and 0.56 V, respectively. Additionally, the deep over-discharge also leads to the decay of the electrolyte structure, associated with LiF, Li 2 CO 3 and Li x PO y F z by-products. The detailed overlithiation mechanism will provide important theoretical guidance for practical applications.</description><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal morphology</subject><subject>Decomposition</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytic cells</subject><subject>Energy Storage</subject><subject>Ion etching</subject><subject>Iron</subject><subject>Lithium</subject><subject>Lithium fluoride</subject><subject>Lithium manganese oxides</subject><subject>Lithium oxides</subject><subject>Morphology</subject><subject>Olivine</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Photoelectrons</subject><subject>Renewable and Green Energy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA5-jOfiZHKVaFSj3Ym7Bs00mbkmzqbtLiv3fbCN48DDOH93kHHkJugd4DpfohAMgMUsriCAaQHs7ICDLFUqoVPScjmgudair0JbkKYUupUsD0iHwunLd7rCu3TroNJu0efV11m8p2VeuSBouNdVVokrZMZtWbY3ORWLeK9xTf492HI3ki-iZtsLN1srRdh77CcE0uSlsHvPndY7KYPn1MXtLZ_Pl18jhLCw55l6JayZwh5lwKywUopkFSBM1RAc-4AlFmUDBZ5oXIRb7kvFzyDLUUwFZK8DG5G3p3vv3qMXRm2_bexZeGyVwC1yBoTLEhVfg2BI-l2fmqsf7bADVHi2awaKJFc7JoDhHiAxRi2K3R_1X_Q_0AOlVz9g</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yu, Lele</creator><creator>Tian, Yexing</creator><creator>Xing, Yiran</creator><creator>Hou, Chen</creator><creator>Si, Yongheng</creator><creator>Lu, Han</creator><creator>Zhao, Yujuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries</title><author>Yu, Lele ; Tian, Yexing ; Xing, Yiran ; Hou, Chen ; Si, Yongheng ; Lu, Han ; Zhao, Yujuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e6d592ee9354a341627150e173e61383614f81c25f9c4949b33fb38e75412d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal morphology</topic><topic>Decomposition</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytic cells</topic><topic>Energy Storage</topic><topic>Ion etching</topic><topic>Iron</topic><topic>Lithium</topic><topic>Lithium fluoride</topic><topic>Lithium manganese oxides</topic><topic>Lithium oxides</topic><topic>Morphology</topic><topic>Olivine</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Photoelectrons</topic><topic>Renewable and Green Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lele</creatorcontrib><creatorcontrib>Tian, Yexing</creatorcontrib><creatorcontrib>Xing, Yiran</creatorcontrib><creatorcontrib>Hou, Chen</creatorcontrib><creatorcontrib>Si, Yongheng</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Zhao, Yujuan</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lele</au><au>Tian, Yexing</au><au>Xing, Yiran</au><au>Hou, Chen</au><au>Si, Yongheng</au><au>Lu, Han</au><au>Zhao, Yujuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>27</volume><issue>12</issue><spage>5021</spage><epage>5035</epage><pages>5021-5035</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn 2 O 4 and LiFePO 4 cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free systems. The cells were dismantled to study the electrode structure, surface morphology, and compositional changes. The study shows that LiMn 2 O 4 and LiFePO 4 still maintain good crystal morphology during the deep over-discharge process, showing better over-discharge resistance capability with different overlithiation mechanisms. As shown by X-ray diffraction and X-ray photoelectron spectroscopy with Ar-ion etching, the new phase, Li 2 Mn 2 O 4 , appears starting from 2.5 V. Until the voltage is less than 0.2 V, the framework structures of LiMn 2 O 4 are deteriorated, and further overlithiation caused decomposition into Li 2 MnO 2 and Li 2 O. LiFePO 4 essentially maintains its olivine-type structure, but below 0.2 V, direct overlithiation causes decomposition into Li 2 O and Fe metal. Furthermore, overlithiated decomposition of LiMn 2 O 4 and LiFePO 4 occurs at very low voltages approximately 0.43 and 0.56 V, respectively. Additionally, the deep over-discharge also leads to the decay of the electrolyte structure, associated with LiF, Li 2 CO 3 and Li x PO y F z by-products. The detailed overlithiation mechanism will provide important theoretical guidance for practical applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-04211-w</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2021-12, Vol.27 (12), p.5021-5035
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2595137140
source SpringerNature Complete Journals
subjects Cathodes
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Crystal morphology
Decomposition
Discharge
Electrochemistry
Electrode materials
Electrolytic cells
Energy Storage
Ion etching
Iron
Lithium
Lithium fluoride
Lithium manganese oxides
Lithium oxides
Morphology
Olivine
Optical and Electronic Materials
Original Paper
Photoelectrons
Renewable and Green Energy
title Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20overlithiation%20mechanism%20of%20LiMn2O4%20and%20LiFePO4%20using%20lithium-metal%20batteries&rft.jtitle=Ionics&rft.au=Yu,%20Lele&rft.date=2021-12-01&rft.volume=27&rft.issue=12&rft.spage=5021&rft.epage=5035&rft.pages=5021-5035&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-04211-w&rft_dat=%3Cproquest_cross%3E2595137140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595137140&rft_id=info:pmid/&rfr_iscdi=true