Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries
With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn 2 O 4 and LiFePO 4 cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free system...
Gespeichert in:
Veröffentlicht in: | Ionics 2021-12, Vol.27 (12), p.5021-5035 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5035 |
---|---|
container_issue | 12 |
container_start_page | 5021 |
container_title | Ionics |
container_volume | 27 |
creator | Yu, Lele Tian, Yexing Xing, Yiran Hou, Chen Si, Yongheng Lu, Han Zhao, Yujuan |
description | With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn
2
O
4
and LiFePO
4
cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free systems. The cells were dismantled to study the electrode structure, surface morphology, and compositional changes. The study shows that LiMn
2
O
4
and LiFePO
4
still maintain good crystal morphology during the deep over-discharge process, showing better over-discharge resistance capability with different overlithiation mechanisms. As shown by X-ray diffraction and X-ray photoelectron spectroscopy with Ar-ion etching, the new phase, Li
2
Mn
2
O
4
, appears starting from 2.5 V. Until the voltage is less than 0.2 V, the framework structures of LiMn
2
O
4
are deteriorated, and further overlithiation caused decomposition into Li
2
MnO
2
and Li
2
O. LiFePO
4
essentially maintains its olivine-type structure, but below 0.2 V, direct overlithiation causes decomposition into Li
2
O and Fe metal. Furthermore, overlithiated decomposition of LiMn
2
O
4
and LiFePO
4
occurs at very low voltages approximately 0.43 and 0.56 V, respectively. Additionally, the deep over-discharge also leads to the decay of the electrolyte structure, associated with LiF, Li
2
CO
3
and Li
x
PO
y
F
z
by-products. The detailed overlithiation mechanism will provide important theoretical guidance for practical applications. |
doi_str_mv | 10.1007/s11581-021-04211-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595137140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595137140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e6d592ee9354a341627150e173e61383614f81c25f9c4949b33fb38e75412d643</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA5-jOfiZHKVaFSj3Ym7Bs00mbkmzqbtLiv3fbCN48DDOH93kHHkJugd4DpfohAMgMUsriCAaQHs7ICDLFUqoVPScjmgudair0JbkKYUupUsD0iHwunLd7rCu3TroNJu0efV11m8p2VeuSBouNdVVokrZMZtWbY3ORWLeK9xTf492HI3ki-iZtsLN1srRdh77CcE0uSlsHvPndY7KYPn1MXtLZ_Pl18jhLCw55l6JayZwh5lwKywUopkFSBM1RAc-4AlFmUDBZ5oXIRb7kvFzyDLUUwFZK8DG5G3p3vv3qMXRm2_bexZeGyVwC1yBoTLEhVfg2BI-l2fmqsf7bADVHi2awaKJFc7JoDhHiAxRi2K3R_1X_Q_0AOlVz9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595137140</pqid></control><display><type>article</type><title>Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries</title><source>SpringerNature Complete Journals</source><creator>Yu, Lele ; Tian, Yexing ; Xing, Yiran ; Hou, Chen ; Si, Yongheng ; Lu, Han ; Zhao, Yujuan</creator><creatorcontrib>Yu, Lele ; Tian, Yexing ; Xing, Yiran ; Hou, Chen ; Si, Yongheng ; Lu, Han ; Zhao, Yujuan</creatorcontrib><description>With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn
2
O
4
and LiFePO
4
cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free systems. The cells were dismantled to study the electrode structure, surface morphology, and compositional changes. The study shows that LiMn
2
O
4
and LiFePO
4
still maintain good crystal morphology during the deep over-discharge process, showing better over-discharge resistance capability with different overlithiation mechanisms. As shown by X-ray diffraction and X-ray photoelectron spectroscopy with Ar-ion etching, the new phase, Li
2
Mn
2
O
4
, appears starting from 2.5 V. Until the voltage is less than 0.2 V, the framework structures of LiMn
2
O
4
are deteriorated, and further overlithiation caused decomposition into Li
2
MnO
2
and Li
2
O. LiFePO
4
essentially maintains its olivine-type structure, but below 0.2 V, direct overlithiation causes decomposition into Li
2
O and Fe metal. Furthermore, overlithiated decomposition of LiMn
2
O
4
and LiFePO
4
occurs at very low voltages approximately 0.43 and 0.56 V, respectively. Additionally, the deep over-discharge also leads to the decay of the electrolyte structure, associated with LiF, Li
2
CO
3
and Li
x
PO
y
F
z
by-products. The detailed overlithiation mechanism will provide important theoretical guidance for practical applications.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-04211-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cathodes ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal morphology ; Decomposition ; Discharge ; Electrochemistry ; Electrode materials ; Electrolytic cells ; Energy Storage ; Ion etching ; Iron ; Lithium ; Lithium fluoride ; Lithium manganese oxides ; Lithium oxides ; Morphology ; Olivine ; Optical and Electronic Materials ; Original Paper ; Photoelectrons ; Renewable and Green Energy</subject><ispartof>Ionics, 2021-12, Vol.27 (12), p.5021-5035</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e6d592ee9354a341627150e173e61383614f81c25f9c4949b33fb38e75412d643</citedby><cites>FETCH-LOGICAL-c319t-e6d592ee9354a341627150e173e61383614f81c25f9c4949b33fb38e75412d643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-021-04211-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-021-04211-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yu, Lele</creatorcontrib><creatorcontrib>Tian, Yexing</creatorcontrib><creatorcontrib>Xing, Yiran</creatorcontrib><creatorcontrib>Hou, Chen</creatorcontrib><creatorcontrib>Si, Yongheng</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Zhao, Yujuan</creatorcontrib><title>Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn
2
O
4
and LiFePO
4
cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free systems. The cells were dismantled to study the electrode structure, surface morphology, and compositional changes. The study shows that LiMn
2
O
4
and LiFePO
4
still maintain good crystal morphology during the deep over-discharge process, showing better over-discharge resistance capability with different overlithiation mechanisms. As shown by X-ray diffraction and X-ray photoelectron spectroscopy with Ar-ion etching, the new phase, Li
2
Mn
2
O
4
, appears starting from 2.5 V. Until the voltage is less than 0.2 V, the framework structures of LiMn
2
O
4
are deteriorated, and further overlithiation caused decomposition into Li
2
MnO
2
and Li
2
O. LiFePO
4
essentially maintains its olivine-type structure, but below 0.2 V, direct overlithiation causes decomposition into Li
2
O and Fe metal. Furthermore, overlithiated decomposition of LiMn
2
O
4
and LiFePO
4
occurs at very low voltages approximately 0.43 and 0.56 V, respectively. Additionally, the deep over-discharge also leads to the decay of the electrolyte structure, associated with LiF, Li
2
CO
3
and Li
x
PO
y
F
z
by-products. The detailed overlithiation mechanism will provide important theoretical guidance for practical applications.</description><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal morphology</subject><subject>Decomposition</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytic cells</subject><subject>Energy Storage</subject><subject>Ion etching</subject><subject>Iron</subject><subject>Lithium</subject><subject>Lithium fluoride</subject><subject>Lithium manganese oxides</subject><subject>Lithium oxides</subject><subject>Morphology</subject><subject>Olivine</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Photoelectrons</subject><subject>Renewable and Green Energy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA5-jOfiZHKVaFSj3Ym7Bs00mbkmzqbtLiv3fbCN48DDOH93kHHkJugd4DpfohAMgMUsriCAaQHs7ICDLFUqoVPScjmgudair0JbkKYUupUsD0iHwunLd7rCu3TroNJu0efV11m8p2VeuSBouNdVVokrZMZtWbY3ORWLeK9xTf492HI3ki-iZtsLN1srRdh77CcE0uSlsHvPndY7KYPn1MXtLZ_Pl18jhLCw55l6JayZwh5lwKywUopkFSBM1RAc-4AlFmUDBZ5oXIRb7kvFzyDLUUwFZK8DG5G3p3vv3qMXRm2_bexZeGyVwC1yBoTLEhVfg2BI-l2fmqsf7bADVHi2awaKJFc7JoDhHiAxRi2K3R_1X_Q_0AOlVz9g</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yu, Lele</creator><creator>Tian, Yexing</creator><creator>Xing, Yiran</creator><creator>Hou, Chen</creator><creator>Si, Yongheng</creator><creator>Lu, Han</creator><creator>Zhao, Yujuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries</title><author>Yu, Lele ; Tian, Yexing ; Xing, Yiran ; Hou, Chen ; Si, Yongheng ; Lu, Han ; Zhao, Yujuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e6d592ee9354a341627150e173e61383614f81c25f9c4949b33fb38e75412d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal morphology</topic><topic>Decomposition</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytic cells</topic><topic>Energy Storage</topic><topic>Ion etching</topic><topic>Iron</topic><topic>Lithium</topic><topic>Lithium fluoride</topic><topic>Lithium manganese oxides</topic><topic>Lithium oxides</topic><topic>Morphology</topic><topic>Olivine</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Photoelectrons</topic><topic>Renewable and Green Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Lele</creatorcontrib><creatorcontrib>Tian, Yexing</creatorcontrib><creatorcontrib>Xing, Yiran</creatorcontrib><creatorcontrib>Hou, Chen</creatorcontrib><creatorcontrib>Si, Yongheng</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Zhao, Yujuan</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Lele</au><au>Tian, Yexing</au><au>Xing, Yiran</au><au>Hou, Chen</au><au>Si, Yongheng</au><au>Lu, Han</au><au>Zhao, Yujuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>27</volume><issue>12</issue><spage>5021</spage><epage>5035</epage><pages>5021-5035</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>With the solid-state battery (vs. Li) application, the overlithiation mechanism of the different cathode materials is worthy to investigate. In this study, both LiMn
2
O
4
and LiFePO
4
cathode materials at different over-discharge conditions were tested using half cell (vs. Li) and anode-free systems. The cells were dismantled to study the electrode structure, surface morphology, and compositional changes. The study shows that LiMn
2
O
4
and LiFePO
4
still maintain good crystal morphology during the deep over-discharge process, showing better over-discharge resistance capability with different overlithiation mechanisms. As shown by X-ray diffraction and X-ray photoelectron spectroscopy with Ar-ion etching, the new phase, Li
2
Mn
2
O
4
, appears starting from 2.5 V. Until the voltage is less than 0.2 V, the framework structures of LiMn
2
O
4
are deteriorated, and further overlithiation caused decomposition into Li
2
MnO
2
and Li
2
O. LiFePO
4
essentially maintains its olivine-type structure, but below 0.2 V, direct overlithiation causes decomposition into Li
2
O and Fe metal. Furthermore, overlithiated decomposition of LiMn
2
O
4
and LiFePO
4
occurs at very low voltages approximately 0.43 and 0.56 V, respectively. Additionally, the deep over-discharge also leads to the decay of the electrolyte structure, associated with LiF, Li
2
CO
3
and Li
x
PO
y
F
z
by-products. The detailed overlithiation mechanism will provide important theoretical guidance for practical applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-04211-w</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2021-12, Vol.27 (12), p.5021-5035 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2595137140 |
source | SpringerNature Complete Journals |
subjects | Cathodes Chemistry Chemistry and Materials Science Condensed Matter Physics Crystal morphology Decomposition Discharge Electrochemistry Electrode materials Electrolytic cells Energy Storage Ion etching Iron Lithium Lithium fluoride Lithium manganese oxides Lithium oxides Morphology Olivine Optical and Electronic Materials Original Paper Photoelectrons Renewable and Green Energy |
title | Unraveling the overlithiation mechanism of LiMn2O4 and LiFePO4 using lithium-metal batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20overlithiation%20mechanism%20of%20LiMn2O4%20and%20LiFePO4%20using%20lithium-metal%20batteries&rft.jtitle=Ionics&rft.au=Yu,%20Lele&rft.date=2021-12-01&rft.volume=27&rft.issue=12&rft.spage=5021&rft.epage=5035&rft.pages=5021-5035&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-04211-w&rft_dat=%3Cproquest_cross%3E2595137140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595137140&rft_id=info:pmid/&rfr_iscdi=true |