Classical and variational Poisson cohomology

We prove that, for a Poisson vertex algebra V , the canonical injective homomorphism of the variational cohomology of V to its classical cohomology is an isomorphism, provided that V , viewed as a differential algebra, is an algebra of differential polynomials in finitely many differential variables...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese journal of mathematics 2021-11, Vol.16 (2), p.203-246
Hauptverfasser: Bakalov, Bojko, De Sole, Alberto, Heluani, Reimundo, Kac, Victor G., Vignoli, Veronica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246
container_issue 2
container_start_page 203
container_title Japanese journal of mathematics
container_volume 16
creator Bakalov, Bojko
De Sole, Alberto
Heluani, Reimundo
Kac, Victor G.
Vignoli, Veronica
description We prove that, for a Poisson vertex algebra V , the canonical injective homomorphism of the variational cohomology of V to its classical cohomology is an isomorphism, provided that V , viewed as a differential algebra, is an algebra of differential polynomials in finitely many differential variables. This theorem is one of the key ingredients in the computation of vertex algebra cohomology. For its proof, we introduce the sesquilinear Hochschild and Harrison cohomology complexes and prove a vanishing theorem for the symmetric sesquilinear Harrison cohomology of the algebra of differential polynomials in finitely many differential variables.
doi_str_mv 10.1007/s11537-021-2109-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595136863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595136863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e958a84ea837a33c39080554d7b41d89554c88fd311e3749a881100b85bfe89f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvBq9FMZrM7OUrxCwp60HNId7N1y3ZTM63Qf29kBU-e5oP3fZl5hLgEdQNKVbcMYLCSSoPUoKzUR2ICVILEUhfHYqI05SVCeSrOmNdKGa2hnIjree-Zu9r3Mz80sy-fOr_r4pDn19gxx2FWx4-4iX1cHc7FSet7Dhe_dSreH-7f5k9y8fL4PL9byBpJ72SwhjwVwRNWHrFGq0gZUzTVsoCGbG5rorZBgIBVYT0R5CeWZJZtINviVFyNudsUP_eBd24d9ynfxE4bawBLKjGrYFTVKTKn0Lpt6jY-HRwo9wPFjVBchuJ-oDidPXr0cNYOq5D-kv83fQOfJWJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595136863</pqid></control><display><type>article</type><title>Classical and variational Poisson cohomology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bakalov, Bojko ; De Sole, Alberto ; Heluani, Reimundo ; Kac, Victor G. ; Vignoli, Veronica</creator><creatorcontrib>Bakalov, Bojko ; De Sole, Alberto ; Heluani, Reimundo ; Kac, Victor G. ; Vignoli, Veronica</creatorcontrib><description>We prove that, for a Poisson vertex algebra V , the canonical injective homomorphism of the variational cohomology of V to its classical cohomology is an isomorphism, provided that V , viewed as a differential algebra, is an algebra of differential polynomials in finitely many differential variables. This theorem is one of the key ingredients in the computation of vertex algebra cohomology. For its proof, we introduce the sesquilinear Hochschild and Harrison cohomology complexes and prove a vanishing theorem for the symmetric sesquilinear Harrison cohomology of the algebra of differential polynomials in finitely many differential variables.</description><identifier>ISSN: 0289-2316</identifier><identifier>EISSN: 1861-3624</identifier><identifier>DOI: 10.1007/s11537-021-2109-2</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Algebra ; History of Mathematical Sciences ; Homology ; Homomorphisms ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Original Paper ; Polynomials ; Theorems</subject><ispartof>Japanese journal of mathematics, 2021-11, Vol.16 (2), p.203-246</ispartof><rights>The Mathematical Society of Japan and Springer Japan KK, part of Springer Nature 2021</rights><rights>The Mathematical Society of Japan and Springer Japan KK, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e958a84ea837a33c39080554d7b41d89554c88fd311e3749a881100b85bfe89f3</citedby><cites>FETCH-LOGICAL-c382t-e958a84ea837a33c39080554d7b41d89554c88fd311e3749a881100b85bfe89f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11537-021-2109-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11537-021-2109-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Bakalov, Bojko</creatorcontrib><creatorcontrib>De Sole, Alberto</creatorcontrib><creatorcontrib>Heluani, Reimundo</creatorcontrib><creatorcontrib>Kac, Victor G.</creatorcontrib><creatorcontrib>Vignoli, Veronica</creatorcontrib><title>Classical and variational Poisson cohomology</title><title>Japanese journal of mathematics</title><addtitle>Jpn. J. Math</addtitle><description>We prove that, for a Poisson vertex algebra V , the canonical injective homomorphism of the variational cohomology of V to its classical cohomology is an isomorphism, provided that V , viewed as a differential algebra, is an algebra of differential polynomials in finitely many differential variables. This theorem is one of the key ingredients in the computation of vertex algebra cohomology. For its proof, we introduce the sesquilinear Hochschild and Harrison cohomology complexes and prove a vanishing theorem for the symmetric sesquilinear Harrison cohomology of the algebra of differential polynomials in finitely many differential variables.</description><subject>Algebra</subject><subject>History of Mathematical Sciences</subject><subject>Homology</subject><subject>Homomorphisms</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Theorems</subject><issn>0289-2316</issn><issn>1861-3624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvBq9FMZrM7OUrxCwp60HNId7N1y3ZTM63Qf29kBU-e5oP3fZl5hLgEdQNKVbcMYLCSSoPUoKzUR2ICVILEUhfHYqI05SVCeSrOmNdKGa2hnIjree-Zu9r3Mz80sy-fOr_r4pDn19gxx2FWx4-4iX1cHc7FSet7Dhe_dSreH-7f5k9y8fL4PL9byBpJ72SwhjwVwRNWHrFGq0gZUzTVsoCGbG5rorZBgIBVYT0R5CeWZJZtINviVFyNudsUP_eBd24d9ynfxE4bawBLKjGrYFTVKTKn0Lpt6jY-HRwo9wPFjVBchuJ-oDidPXr0cNYOq5D-kv83fQOfJWJQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bakalov, Bojko</creator><creator>De Sole, Alberto</creator><creator>Heluani, Reimundo</creator><creator>Kac, Victor G.</creator><creator>Vignoli, Veronica</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Classical and variational Poisson cohomology</title><author>Bakalov, Bojko ; De Sole, Alberto ; Heluani, Reimundo ; Kac, Victor G. ; Vignoli, Veronica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e958a84ea837a33c39080554d7b41d89554c88fd311e3749a881100b85bfe89f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>History of Mathematical Sciences</topic><topic>Homology</topic><topic>Homomorphisms</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakalov, Bojko</creatorcontrib><creatorcontrib>De Sole, Alberto</creatorcontrib><creatorcontrib>Heluani, Reimundo</creatorcontrib><creatorcontrib>Kac, Victor G.</creatorcontrib><creatorcontrib>Vignoli, Veronica</creatorcontrib><collection>CrossRef</collection><jtitle>Japanese journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakalov, Bojko</au><au>De Sole, Alberto</au><au>Heluani, Reimundo</au><au>Kac, Victor G.</au><au>Vignoli, Veronica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical and variational Poisson cohomology</atitle><jtitle>Japanese journal of mathematics</jtitle><stitle>Jpn. J. Math</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>16</volume><issue>2</issue><spage>203</spage><epage>246</epage><pages>203-246</pages><issn>0289-2316</issn><eissn>1861-3624</eissn><abstract>We prove that, for a Poisson vertex algebra V , the canonical injective homomorphism of the variational cohomology of V to its classical cohomology is an isomorphism, provided that V , viewed as a differential algebra, is an algebra of differential polynomials in finitely many differential variables. This theorem is one of the key ingredients in the computation of vertex algebra cohomology. For its proof, we introduce the sesquilinear Hochschild and Harrison cohomology complexes and prove a vanishing theorem for the symmetric sesquilinear Harrison cohomology of the algebra of differential polynomials in finitely many differential variables.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s11537-021-2109-2</doi><tpages>44</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0289-2316
ispartof Japanese journal of mathematics, 2021-11, Vol.16 (2), p.203-246
issn 0289-2316
1861-3624
language eng
recordid cdi_proquest_journals_2595136863
source SpringerLink Journals - AutoHoldings
subjects Algebra
History of Mathematical Sciences
Homology
Homomorphisms
Isomorphism
Mathematics
Mathematics and Statistics
Original Paper
Polynomials
Theorems
title Classical and variational Poisson cohomology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20and%20variational%20Poisson%20cohomology&rft.jtitle=Japanese%20journal%20of%20mathematics&rft.au=Bakalov,%20Bojko&rft.date=2021-11-01&rft.volume=16&rft.issue=2&rft.spage=203&rft.epage=246&rft.pages=203-246&rft.issn=0289-2316&rft.eissn=1861-3624&rft_id=info:doi/10.1007/s11537-021-2109-2&rft_dat=%3Cproquest_cross%3E2595136863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595136863&rft_id=info:pmid/&rfr_iscdi=true