Best Proximity Pairs in Ultrametric Spaces
In the present paper, we study the existence of best proximity pair in ultrametric spaces. We show, under suitable assumptions, that the proximinal pair has a best proximity pair. As a consequence we generalize a well known best approximation result and we derive some fixed point theorems. Moreover,...
Gespeichert in:
Veröffentlicht in: | P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2021-10, Vol.13 (4), p.255-265 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 4 |
container_start_page | 255 |
container_title | P-adic numbers, ultrametric analysis, and applications |
container_volume | 13 |
creator | Chaira, Karim Dovgoshey, Oleksiy Lazaiz, Samih |
description | In the present paper, we study the existence of best proximity pair in ultrametric spaces. We show, under suitable assumptions, that the proximinal pair
has a best proximity pair. As a consequence we generalize a well known best approximation result and we derive some fixed point theorems. Moreover, we provide examples to illustrate the obtained results. |
doi_str_mv | 10.1134/S2070046621040014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595136223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595136223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9594bc0b1d9a5aa621ceb728cb715ff241f45fc43936bf235c222b9d8c5eb7b63</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWGp_gG8LvgmryeSym0ct3qBgofY5JGkiKd2LyRbsvzdlRR_EeZlh-M7M4SB0SfANIZTdrgBXGDMhgGCGMWEnaHJclZhV7PRnFuIczVLa4lwUqprDBF3fuzQUy9h9hiYMh2KpQ0xFaIv1boi6cUMMtlj12rp0gc683iU3--5TtH58eJs_l4vXp5f53aK0lMuhlFwyY7EhG6m51tmTdaaC2pqKcO-BEc-4t4xKKowHyi0AGLmpLc-cEXSKrsa7few-9tme2nb72OaXCrjkhAoAmikyUjZ2KUXnVR9Do-NBEayOqag_qWQNjJqU2fbdxd_L_4u-AHdVYV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595136223</pqid></control><display><type>article</type><title>Best Proximity Pairs in Ultrametric Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Chaira, Karim ; Dovgoshey, Oleksiy ; Lazaiz, Samih</creator><creatorcontrib>Chaira, Karim ; Dovgoshey, Oleksiy ; Lazaiz, Samih</creatorcontrib><description>In the present paper, we study the existence of best proximity pair in ultrametric spaces. We show, under suitable assumptions, that the proximinal pair
has a best proximity pair. As a consequence we generalize a well known best approximation result and we derive some fixed point theorems. Moreover, we provide examples to illustrate the obtained results.</description><identifier>ISSN: 2070-0466</identifier><identifier>EISSN: 2070-0474</identifier><identifier>DOI: 10.1134/S2070046621040014</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>14/34 ; 639/766/189 ; 639/766/530 ; 639/766/747 ; Algebra ; Fixed points (mathematics) ; Mathematics ; Mathematics and Statistics ; Proximity</subject><ispartof>P-adic numbers, ultrametric analysis, and applications, 2021-10, Vol.13 (4), p.255-265</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-9594bc0b1d9a5aa621ceb728cb715ff241f45fc43936bf235c222b9d8c5eb7b63</citedby><cites>FETCH-LOGICAL-c359t-9594bc0b1d9a5aa621ceb728cb715ff241f45fc43936bf235c222b9d8c5eb7b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070046621040014$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070046621040014$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Chaira, Karim</creatorcontrib><creatorcontrib>Dovgoshey, Oleksiy</creatorcontrib><creatorcontrib>Lazaiz, Samih</creatorcontrib><title>Best Proximity Pairs in Ultrametric Spaces</title><title>P-adic numbers, ultrametric analysis, and applications</title><addtitle>P-Adic Num Ultrametr Anal Appl</addtitle><description>In the present paper, we study the existence of best proximity pair in ultrametric spaces. We show, under suitable assumptions, that the proximinal pair
has a best proximity pair. As a consequence we generalize a well known best approximation result and we derive some fixed point theorems. Moreover, we provide examples to illustrate the obtained results.</description><subject>14/34</subject><subject>639/766/189</subject><subject>639/766/530</subject><subject>639/766/747</subject><subject>Algebra</subject><subject>Fixed points (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Proximity</subject><issn>2070-0466</issn><issn>2070-0474</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLAzEQhYMoWGp_gG8LvgmryeSym0ct3qBgofY5JGkiKd2LyRbsvzdlRR_EeZlh-M7M4SB0SfANIZTdrgBXGDMhgGCGMWEnaHJclZhV7PRnFuIczVLa4lwUqprDBF3fuzQUy9h9hiYMh2KpQ0xFaIv1boi6cUMMtlj12rp0gc683iU3--5TtH58eJs_l4vXp5f53aK0lMuhlFwyY7EhG6m51tmTdaaC2pqKcO-BEc-4t4xKKowHyi0AGLmpLc-cEXSKrsa7few-9tme2nb72OaXCrjkhAoAmikyUjZ2KUXnVR9Do-NBEayOqag_qWQNjJqU2fbdxd_L_4u-AHdVYV4</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chaira, Karim</creator><creator>Dovgoshey, Oleksiy</creator><creator>Lazaiz, Samih</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Best Proximity Pairs in Ultrametric Spaces</title><author>Chaira, Karim ; Dovgoshey, Oleksiy ; Lazaiz, Samih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9594bc0b1d9a5aa621ceb728cb715ff241f45fc43936bf235c222b9d8c5eb7b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/34</topic><topic>639/766/189</topic><topic>639/766/530</topic><topic>639/766/747</topic><topic>Algebra</topic><topic>Fixed points (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Proximity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaira, Karim</creatorcontrib><creatorcontrib>Dovgoshey, Oleksiy</creatorcontrib><creatorcontrib>Lazaiz, Samih</creatorcontrib><collection>CrossRef</collection><jtitle>P-adic numbers, ultrametric analysis, and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaira, Karim</au><au>Dovgoshey, Oleksiy</au><au>Lazaiz, Samih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best Proximity Pairs in Ultrametric Spaces</atitle><jtitle>P-adic numbers, ultrametric analysis, and applications</jtitle><stitle>P-Adic Num Ultrametr Anal Appl</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>255</spage><epage>265</epage><pages>255-265</pages><issn>2070-0466</issn><eissn>2070-0474</eissn><abstract>In the present paper, we study the existence of best proximity pair in ultrametric spaces. We show, under suitable assumptions, that the proximinal pair
has a best proximity pair. As a consequence we generalize a well known best approximation result and we derive some fixed point theorems. Moreover, we provide examples to illustrate the obtained results.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070046621040014</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0466 |
ispartof | P-adic numbers, ultrametric analysis, and applications, 2021-10, Vol.13 (4), p.255-265 |
issn | 2070-0466 2070-0474 |
language | eng |
recordid | cdi_proquest_journals_2595136223 |
source | Springer Nature - Complete Springer Journals |
subjects | 14/34 639/766/189 639/766/530 639/766/747 Algebra Fixed points (mathematics) Mathematics Mathematics and Statistics Proximity |
title | Best Proximity Pairs in Ultrametric Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20Proximity%20Pairs%20in%20Ultrametric%20Spaces&rft.jtitle=P-adic%20numbers,%20ultrametric%20analysis,%20and%20applications&rft.au=Chaira,%20Karim&rft.date=2021-10-01&rft.volume=13&rft.issue=4&rft.spage=255&rft.epage=265&rft.pages=255-265&rft.issn=2070-0466&rft.eissn=2070-0474&rft_id=info:doi/10.1134/S2070046621040014&rft_dat=%3Cproquest_cross%3E2595136223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595136223&rft_id=info:pmid/&rfr_iscdi=true |