Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system

Critical thicknesses are calculated in reflected systems for high-order anisotropic scattering by using neutron transport theory. The anisotropic systems are taken into account from isotropic to tetra-anisotropic scattering terms one by one. Neutron transport equation is solved by using the Legendre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pramāṇa 2021-12, Vol.95 (4), Article 190
Hauptverfasser: Koklu, Halide, Ozer, Okan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Pramāṇa
container_volume 95
creator Koklu, Halide
Ozer, Okan
description Critical thicknesses are calculated in reflected systems for high-order anisotropic scattering by using neutron transport theory. The anisotropic systems are taken into account from isotropic to tetra-anisotropic scattering terms one by one. Neutron transport equation is solved by using the Legendre polynomial P N method and then Chebyshev polynomial T N method. The eigenfunctions and eigenvalues are calculated for different numbers of secondary neutrons ( c ) up to the ninth-order term in the iteration of the two methods. The Marshak boundary condition is applied to find critical thickness for the reflected reactor system. Thus, a wide-range critical thickness spectrum has been generated, depending on the number of secondary neutrons, anisotropic scattering coefficients and different range of reflection coefficients. Finally, the calculated critical thickness values are compared with those in the literature and it is observed that our results are in agreement with them.
doi_str_mv 10.1007/s12043-021-02190-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595136214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595136214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e770417ee18e4275bb42edd9bbe1002a9a8ac0c987315baabb1059c0c1180c273</originalsourceid><addsrcrecordid>eNp9kD1PAzEMhiMEEuXjDzBFYg7ESY5cRlTxJVVigYkhSlIXUq53R5IO_fekHBIbg2XL8mO_fgm5AH4FnOvrDIIrybiAfRjO4IDMuNGSaQA4rLXkiinRmmNykvOaczBKNjPyNk-xxOA6Wj5i-OwxZzqmwXe4oash0YIlOeb6mIeShjEGmoMrBVPs32nsK4U04arDUHBZKxdKpfIuF9yckaOV6zKe_-ZT8np_9zJ_ZIvnh6f57YIFCaYw1Jor0IjQohK68V4JXC6N91h_E8641gUeTKslNN4574E3pnYAWh6ElqfkctpbhX9tMRe7HrapryetaEwD8kaAqlNimgppyLlqtmOKG5d2Frjdm2gnE2010P6YaKFCcoLyuP8Y09_qf6hv7E51wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595136214</pqid></control><display><type>article</type><title>Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system</title><source>Indian Academy of Sciences</source><source>SpringerLink Journals - AutoHoldings</source><creator>Koklu, Halide ; Ozer, Okan</creator><creatorcontrib>Koklu, Halide ; Ozer, Okan</creatorcontrib><description>Critical thicknesses are calculated in reflected systems for high-order anisotropic scattering by using neutron transport theory. The anisotropic systems are taken into account from isotropic to tetra-anisotropic scattering terms one by one. Neutron transport equation is solved by using the Legendre polynomial P N method and then Chebyshev polynomial T N method. The eigenfunctions and eigenvalues are calculated for different numbers of secondary neutrons ( c ) up to the ninth-order term in the iteration of the two methods. The Marshak boundary condition is applied to find critical thickness for the reflected reactor system. Thus, a wide-range critical thickness spectrum has been generated, depending on the number of secondary neutrons, anisotropic scattering coefficients and different range of reflection coefficients. Finally, the calculated critical thickness values are compared with those in the literature and it is observed that our results are in agreement with them.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-021-02190-1</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Boundary conditions ; Chebyshev approximation ; Eigenvalues ; Eigenvectors ; Mathematical analysis ; Neutrons ; Observations and Techniques ; Physics ; Physics and Astronomy ; Polynomials ; Scattering coefficient ; Thickness ; Transport equations ; Transport theory</subject><ispartof>Pramāṇa, 2021-12, Vol.95 (4), Article 190</ispartof><rights>Indian Academy of Sciences 2021</rights><rights>Indian Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e770417ee18e4275bb42edd9bbe1002a9a8ac0c987315baabb1059c0c1180c273</citedby><cites>FETCH-LOGICAL-c319t-e770417ee18e4275bb42edd9bbe1002a9a8ac0c987315baabb1059c0c1180c273</cites><orcidid>0000-0003-1787-6693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12043-021-02190-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12043-021-02190-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Koklu, Halide</creatorcontrib><creatorcontrib>Ozer, Okan</creatorcontrib><title>Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>Critical thicknesses are calculated in reflected systems for high-order anisotropic scattering by using neutron transport theory. The anisotropic systems are taken into account from isotropic to tetra-anisotropic scattering terms one by one. Neutron transport equation is solved by using the Legendre polynomial P N method and then Chebyshev polynomial T N method. The eigenfunctions and eigenvalues are calculated for different numbers of secondary neutrons ( c ) up to the ninth-order term in the iteration of the two methods. The Marshak boundary condition is applied to find critical thickness for the reflected reactor system. Thus, a wide-range critical thickness spectrum has been generated, depending on the number of secondary neutrons, anisotropic scattering coefficients and different range of reflection coefficients. Finally, the calculated critical thickness values are compared with those in the literature and it is observed that our results are in agreement with them.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Boundary conditions</subject><subject>Chebyshev approximation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Mathematical analysis</subject><subject>Neutrons</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Scattering coefficient</subject><subject>Thickness</subject><subject>Transport equations</subject><subject>Transport theory</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PAzEMhiMEEuXjDzBFYg7ESY5cRlTxJVVigYkhSlIXUq53R5IO_fekHBIbg2XL8mO_fgm5AH4FnOvrDIIrybiAfRjO4IDMuNGSaQA4rLXkiinRmmNykvOaczBKNjPyNk-xxOA6Wj5i-OwxZzqmwXe4oash0YIlOeb6mIeShjEGmoMrBVPs32nsK4U04arDUHBZKxdKpfIuF9yckaOV6zKe_-ZT8np_9zJ_ZIvnh6f57YIFCaYw1Jor0IjQohK68V4JXC6N91h_E8641gUeTKslNN4574E3pnYAWh6ElqfkctpbhX9tMRe7HrapryetaEwD8kaAqlNimgppyLlqtmOKG5d2Frjdm2gnE2010P6YaKFCcoLyuP8Y09_qf6hv7E51wA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Koklu, Halide</creator><creator>Ozer, Okan</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1787-6693</orcidid></search><sort><creationdate>20211201</creationdate><title>Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system</title><author>Koklu, Halide ; Ozer, Okan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e770417ee18e4275bb42edd9bbe1002a9a8ac0c987315baabb1059c0c1180c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Boundary conditions</topic><topic>Chebyshev approximation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Mathematical analysis</topic><topic>Neutrons</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Scattering coefficient</topic><topic>Thickness</topic><topic>Transport equations</topic><topic>Transport theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koklu, Halide</creatorcontrib><creatorcontrib>Ozer, Okan</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koklu, Halide</au><au>Ozer, Okan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>95</volume><issue>4</issue><artnum>190</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>Critical thicknesses are calculated in reflected systems for high-order anisotropic scattering by using neutron transport theory. The anisotropic systems are taken into account from isotropic to tetra-anisotropic scattering terms one by one. Neutron transport equation is solved by using the Legendre polynomial P N method and then Chebyshev polynomial T N method. The eigenfunctions and eigenvalues are calculated for different numbers of secondary neutrons ( c ) up to the ninth-order term in the iteration of the two methods. The Marshak boundary condition is applied to find critical thickness for the reflected reactor system. Thus, a wide-range critical thickness spectrum has been generated, depending on the number of secondary neutrons, anisotropic scattering coefficients and different range of reflection coefficients. Finally, the calculated critical thickness values are compared with those in the literature and it is observed that our results are in agreement with them.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-021-02190-1</doi><orcidid>https://orcid.org/0000-0003-1787-6693</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-4289
ispartof Pramāṇa, 2021-12, Vol.95 (4), Article 190
issn 0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_2595136214
source Indian Academy of Sciences; SpringerLink Journals - AutoHoldings
subjects Astronomy
Astrophysics and Astroparticles
Boundary conditions
Chebyshev approximation
Eigenvalues
Eigenvectors
Mathematical analysis
Neutrons
Observations and Techniques
Physics
Physics and Astronomy
Polynomials
Scattering coefficient
Thickness
Transport equations
Transport theory
title Critical thickness problem for tetra-anisotropic scattering in the reflected reactor system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20thickness%20problem%20for%20tetra-anisotropic%20scattering%20in%20the%20reflected%20reactor%20system&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Koklu,%20Halide&rft.date=2021-12-01&rft.volume=95&rft.issue=4&rft.artnum=190&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-021-02190-1&rft_dat=%3Cproquest_cross%3E2595136214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595136214&rft_id=info:pmid/&rfr_iscdi=true