Non-singular $\mathbb {Z}^d$ -actions: an ergodic theorem over rectangles with application to the critical dimensions

We adapt techniques developed by Hochman to prove a non-singular ergodic theorem for $\mathbb {Z}^d$ -actions where the sums are over rectangles with side lengths increasing at arbitrary rates, and in particular are not necessarily balls of a norm. This result is applied to show that the critical di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2021-12, Vol.41 (12), p.3722-3739
Hauptverfasser: DOOLEY, ANTHONY H., JARRETT, KIERAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!