Non-singular $\mathbb {Z}^d$ -actions: an ergodic theorem over rectangles with application to the critical dimensions
We adapt techniques developed by Hochman to prove a non-singular ergodic theorem for $\mathbb {Z}^d$ -actions where the sums are over rectangles with side lengths increasing at arbitrary rates, and in particular are not necessarily balls of a norm. This result is applied to show that the critical di...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2021-12, Vol.41 (12), p.3722-3739 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!