Approximations of the Riley slice

Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Elzenaar, Alex, Gaven, Martin, Schillewaert, Jeroen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Elzenaar, Alex
Gaven, Martin
Schillewaert, Jeroen
description Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2594899582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594899582</sourcerecordid><originalsourceid>FETCH-proquest_journals_25948995823</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdCwoKMqvyMxNLMnMzytWyE9TKMlIVQjKzEmtVCjOyUxO5WFgTUvMKU7lhdLcDMpuriHOHrpAfYWlqcUl8Vn5pUV5QKl4I1NLEwtLS1MLI2PiVAEAOJstqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594899582</pqid></control><display><type>article</type><title>Approximations of the Riley slice</title><source>Free E- Journals</source><creator>Elzenaar, Alex ; Gaven, Martin ; Schillewaert, Jeroen</creator><creatorcontrib>Elzenaar, Alex ; Gaven, Martin ; Schillewaert, Jeroen</creatorcontrib><description>Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Half spaces ; Polynomials</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Elzenaar, Alex</creatorcontrib><creatorcontrib>Gaven, Martin</creatorcontrib><creatorcontrib>Schillewaert, Jeroen</creatorcontrib><title>Approximations of the Riley slice</title><title>arXiv.org</title><description>Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin.</description><subject>Half spaces</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdCwoKMqvyMxNLMnMzytWyE9TKMlIVQjKzEmtVCjOyUxO5WFgTUvMKU7lhdLcDMpuriHOHrpAfYWlqcUl8Vn5pUV5QKl4I1NLEwtLS1MLI2PiVAEAOJstqQ</recordid><startdate>20211105</startdate><enddate>20211105</enddate><creator>Elzenaar, Alex</creator><creator>Gaven, Martin</creator><creator>Schillewaert, Jeroen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211105</creationdate><title>Approximations of the Riley slice</title><author>Elzenaar, Alex ; Gaven, Martin ; Schillewaert, Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25948995823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Half spaces</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Elzenaar, Alex</creatorcontrib><creatorcontrib>Gaven, Martin</creatorcontrib><creatorcontrib>Schillewaert, Jeroen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elzenaar, Alex</au><au>Gaven, Martin</au><au>Schillewaert, Jeroen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Approximations of the Riley slice</atitle><jtitle>arXiv.org</jtitle><date>2021-11-05</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2594899582
source Free E- Journals
subjects Half spaces
Polynomials
title Approximations of the Riley slice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Approximations%20of%20the%20Riley%20slice&rft.jtitle=arXiv.org&rft.au=Elzenaar,%20Alex&rft.date=2021-11-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2594899582%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594899582&rft_id=info:pmid/&rfr_iscdi=true