Approximations of the Riley slice
Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Elzenaar, Alex Gaven, Martin Schillewaert, Jeroen |
description | Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2594899582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594899582</sourcerecordid><originalsourceid>FETCH-proquest_journals_25948995823</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdCwoKMqvyMxNLMnMzytWyE9TKMlIVQjKzEmtVCjOyUxO5WFgTUvMKU7lhdLcDMpuriHOHrpAfYWlqcUl8Vn5pUV5QKl4I1NLEwtLS1MLI2PiVAEAOJstqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594899582</pqid></control><display><type>article</type><title>Approximations of the Riley slice</title><source>Free E- Journals</source><creator>Elzenaar, Alex ; Gaven, Martin ; Schillewaert, Jeroen</creator><creatorcontrib>Elzenaar, Alex ; Gaven, Martin ; Schillewaert, Jeroen</creatorcontrib><description>Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Half spaces ; Polynomials</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Elzenaar, Alex</creatorcontrib><creatorcontrib>Gaven, Martin</creatorcontrib><creatorcontrib>Schillewaert, Jeroen</creatorcontrib><title>Approximations of the Riley slice</title><title>arXiv.org</title><description>Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin.</description><subject>Half spaces</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQdCwoKMqvyMxNLMnMzytWyE9TKMlIVQjKzEmtVCjOyUxO5WFgTUvMKU7lhdLcDMpuriHOHrpAfYWlqcUl8Vn5pUV5QKl4I1NLEwtLS1MLI2PiVAEAOJstqQ</recordid><startdate>20211105</startdate><enddate>20211105</enddate><creator>Elzenaar, Alex</creator><creator>Gaven, Martin</creator><creator>Schillewaert, Jeroen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211105</creationdate><title>Approximations of the Riley slice</title><author>Elzenaar, Alex ; Gaven, Martin ; Schillewaert, Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25948995823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Half spaces</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Elzenaar, Alex</creatorcontrib><creatorcontrib>Gaven, Martin</creatorcontrib><creatorcontrib>Schillewaert, Jeroen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elzenaar, Alex</au><au>Gaven, Martin</au><au>Schillewaert, Jeroen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Approximations of the Riley slice</atitle><jtitle>arXiv.org</jtitle><date>2021-11-05</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Adapting the ideas of L. Keen and C. Series used in their study of the Riley slice of Schottky groups generated by two parabolics, we explicitly identify `half-space' neighbourhoods of pleating rays which lie completely in the Riley slice. This gives a provable method to determine if a point is in the Riley slice or not. We also discuss the family of Farey polynomials which determine the rational pleating rays and their root set which determines the Riley slice; this leads to a dynamical systems interpretation of the slice. Adapting these methods to the case of Schottky groups generated by two elliptic elements in subsequent work facilitates the programme to identify all the finitely many arithmetic generalised triangle groups and their kin.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2594899582 |
source | Free E- Journals |
subjects | Half spaces Polynomials |
title | Approximations of the Riley slice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Approximations%20of%20the%20Riley%20slice&rft.jtitle=arXiv.org&rft.au=Elzenaar,%20Alex&rft.date=2021-11-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2594899582%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594899582&rft_id=info:pmid/&rfr_iscdi=true |