Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage
Heteroatom doping is one of the most promising strategies toward regulating intrinsically sluggish electronic conductivity and kinetic reaction of transition metal oxides for enhancing their lithium storage. Herein, we designed phosphorus-doped NiMoO 4 nanorods (P-NiMoO 4 ) by using a facile hydroth...
Gespeichert in:
Veröffentlicht in: | Nano research 2022, Vol.15 (1), p.186-194 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | Nano research |
container_volume | 15 |
creator | Yue, Luchao Ma, Chaoqun Yan, Shihai Wu, Zhenguo Zhao, Wenxi Liu, Qian Luo, Yonglan Zhong, Benhe Zhang, Fang Liu, Yang Alshehri, Abdulmohsen Ali Alzahrani, Khalid Ahmed Guo, Xiaodong Sun, Xuping |
description | Heteroatom doping is one of the most promising strategies toward regulating intrinsically sluggish electronic conductivity and kinetic reaction of transition metal oxides for enhancing their lithium storage. Herein, we designed phosphorus-doped NiMoO
4
nanorods (P-NiMoO
4
) by using a facile hydrothermal method and subsequent low-temperature phosphorization treatment. Phosphorus doping played an indispensable role in significantly improving electronic conductivity and the Li
+
diffusion kinetics of NiMoO
4
materials. Experimental investigation and density functional theory calculation demonstrated that phosphorus doping can expand the interplanar spacing and alter electronic structures of NiMoO
4
nanorods. Meanwhile, the introduced phosphorus dopant can generate some oxygen vacancies on the surface of NiMoO
4
, which can accelerate Li
+
diffusion kinetics and provide more active site for lithium storage. As excepted, P-NiMoO
4
electrode delivered a high specific capacity (1,130 mAh·g
−1
at 100 mA·g
−1
after 100 cycles), outstanding cycling durability (945 mAh·g
−1
at 500 mA·g
−1
over 200 cycles), and impressive rate performance (640 mAh·g
−1
at 2,000 mA·g
−1
) for lithium ion batteries (LIBs). This work could provide a potential strategy for improving intrinsic conductivity of transition metal oxides as high-performance anodes for LIBs. |
doi_str_mv | 10.1007/s12274-021-3455-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2594891594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594891594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-42b207fb5e043ab528688d674af008fa0be940d82e7dc5b881607c6cd3a8cd223</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPEOWA7TuIcUcWjUqEXOFuO7SSuWjvYTqX-PY4C4sRKuzuHmVntAHCL0T1GqHoImJCKZojgLKdFkeVnYIHrmmUo1fkvxoRegqsQdgiVBFO2AG59GLw7GtvB2GtobPTGBiOh3msZvbMJSmfVKKM5mniCroXv5s1tKRTWKR1gc4JD70Jq78YAlRsms9Z52Juuh3sTezMeYIjOi05fg4tW7IO--dlL8Pn89LF6zTbbl_XqcZPJHJcxo6QhqGqbQiOai6YgrGRMlRUVLUKsFajRNUWKEV0pWTSM4RJVspQqF0wqQvIluJt903dfow6R79zobTrJSVFTVuM0EwvPLOldCF63fPDmIPyJY8SnXPmcK0-58ilXnicNmTUhcW2n_Z_z_6JvqeF8jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594891594</pqid></control><display><type>article</type><title>Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yue, Luchao ; Ma, Chaoqun ; Yan, Shihai ; Wu, Zhenguo ; Zhao, Wenxi ; Liu, Qian ; Luo, Yonglan ; Zhong, Benhe ; Zhang, Fang ; Liu, Yang ; Alshehri, Abdulmohsen Ali ; Alzahrani, Khalid Ahmed ; Guo, Xiaodong ; Sun, Xuping</creator><creatorcontrib>Yue, Luchao ; Ma, Chaoqun ; Yan, Shihai ; Wu, Zhenguo ; Zhao, Wenxi ; Liu, Qian ; Luo, Yonglan ; Zhong, Benhe ; Zhang, Fang ; Liu, Yang ; Alshehri, Abdulmohsen Ali ; Alzahrani, Khalid Ahmed ; Guo, Xiaodong ; Sun, Xuping</creatorcontrib><description>Heteroatom doping is one of the most promising strategies toward regulating intrinsically sluggish electronic conductivity and kinetic reaction of transition metal oxides for enhancing their lithium storage. Herein, we designed phosphorus-doped NiMoO
4
nanorods (P-NiMoO
4
) by using a facile hydrothermal method and subsequent low-temperature phosphorization treatment. Phosphorus doping played an indispensable role in significantly improving electronic conductivity and the Li
+
diffusion kinetics of NiMoO
4
materials. Experimental investigation and density functional theory calculation demonstrated that phosphorus doping can expand the interplanar spacing and alter electronic structures of NiMoO
4
nanorods. Meanwhile, the introduced phosphorus dopant can generate some oxygen vacancies on the surface of NiMoO
4
, which can accelerate Li
+
diffusion kinetics and provide more active site for lithium storage. As excepted, P-NiMoO
4
electrode delivered a high specific capacity (1,130 mAh·g
−1
at 100 mA·g
−1
after 100 cycles), outstanding cycling durability (945 mAh·g
−1
at 500 mA·g
−1
over 200 cycles), and impressive rate performance (640 mAh·g
−1
at 2,000 mA·g
−1
) for lithium ion batteries (LIBs). This work could provide a potential strategy for improving intrinsic conductivity of transition metal oxides as high-performance anodes for LIBs.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3455-3</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anodes ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Conductivity ; Density functional theory ; Doping ; Kinetics ; Lithium ; Lithium-ion batteries ; Low temperature ; Materials Science ; Metal oxides ; Molybdates ; Nanorods ; Nanotechnology ; Nickel compounds ; Phosphating (coating) ; Phosphorus ; Rechargeable batteries ; Research Article ; Specific capacity ; Transition metal oxides</subject><ispartof>Nano research, 2022, Vol.15 (1), p.186-194</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-42b207fb5e043ab528688d674af008fa0be940d82e7dc5b881607c6cd3a8cd223</citedby><cites>FETCH-LOGICAL-c316t-42b207fb5e043ab528688d674af008fa0be940d82e7dc5b881607c6cd3a8cd223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3455-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3455-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yue, Luchao</creatorcontrib><creatorcontrib>Ma, Chaoqun</creatorcontrib><creatorcontrib>Yan, Shihai</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Zhao, Wenxi</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Luo, Yonglan</creatorcontrib><creatorcontrib>Zhong, Benhe</creatorcontrib><creatorcontrib>Zhang, Fang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Alshehri, Abdulmohsen Ali</creatorcontrib><creatorcontrib>Alzahrani, Khalid Ahmed</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Sun, Xuping</creatorcontrib><title>Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Heteroatom doping is one of the most promising strategies toward regulating intrinsically sluggish electronic conductivity and kinetic reaction of transition metal oxides for enhancing their lithium storage. Herein, we designed phosphorus-doped NiMoO
4
nanorods (P-NiMoO
4
) by using a facile hydrothermal method and subsequent low-temperature phosphorization treatment. Phosphorus doping played an indispensable role in significantly improving electronic conductivity and the Li
+
diffusion kinetics of NiMoO
4
materials. Experimental investigation and density functional theory calculation demonstrated that phosphorus doping can expand the interplanar spacing and alter electronic structures of NiMoO
4
nanorods. Meanwhile, the introduced phosphorus dopant can generate some oxygen vacancies on the surface of NiMoO
4
, which can accelerate Li
+
diffusion kinetics and provide more active site for lithium storage. As excepted, P-NiMoO
4
electrode delivered a high specific capacity (1,130 mAh·g
−1
at 100 mA·g
−1
after 100 cycles), outstanding cycling durability (945 mAh·g
−1
at 500 mA·g
−1
over 200 cycles), and impressive rate performance (640 mAh·g
−1
at 2,000 mA·g
−1
) for lithium ion batteries (LIBs). This work could provide a potential strategy for improving intrinsic conductivity of transition metal oxides as high-performance anodes for LIBs.</description><subject>Anodes</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Molybdates</subject><subject>Nanorods</subject><subject>Nanotechnology</subject><subject>Nickel compounds</subject><subject>Phosphating (coating)</subject><subject>Phosphorus</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Specific capacity</subject><subject>Transition metal oxides</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcLPEOWA7TuIcUcWjUqEXOFuO7SSuWjvYTqX-PY4C4sRKuzuHmVntAHCL0T1GqHoImJCKZojgLKdFkeVnYIHrmmUo1fkvxoRegqsQdgiVBFO2AG59GLw7GtvB2GtobPTGBiOh3msZvbMJSmfVKKM5mniCroXv5s1tKRTWKR1gc4JD70Jq78YAlRsms9Z52Juuh3sTezMeYIjOi05fg4tW7IO--dlL8Pn89LF6zTbbl_XqcZPJHJcxo6QhqGqbQiOai6YgrGRMlRUVLUKsFajRNUWKEV0pWTSM4RJVspQqF0wqQvIluJt903dfow6R79zobTrJSVFTVuM0EwvPLOldCF63fPDmIPyJY8SnXPmcK0-58ilXnicNmTUhcW2n_Z_z_6JvqeF8jA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yue, Luchao</creator><creator>Ma, Chaoqun</creator><creator>Yan, Shihai</creator><creator>Wu, Zhenguo</creator><creator>Zhao, Wenxi</creator><creator>Liu, Qian</creator><creator>Luo, Yonglan</creator><creator>Zhong, Benhe</creator><creator>Zhang, Fang</creator><creator>Liu, Yang</creator><creator>Alshehri, Abdulmohsen Ali</creator><creator>Alzahrani, Khalid Ahmed</creator><creator>Guo, Xiaodong</creator><creator>Sun, Xuping</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2022</creationdate><title>Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage</title><author>Yue, Luchao ; Ma, Chaoqun ; Yan, Shihai ; Wu, Zhenguo ; Zhao, Wenxi ; Liu, Qian ; Luo, Yonglan ; Zhong, Benhe ; Zhang, Fang ; Liu, Yang ; Alshehri, Abdulmohsen Ali ; Alzahrani, Khalid Ahmed ; Guo, Xiaodong ; Sun, Xuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-42b207fb5e043ab528688d674af008fa0be940d82e7dc5b881607c6cd3a8cd223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Molybdates</topic><topic>Nanorods</topic><topic>Nanotechnology</topic><topic>Nickel compounds</topic><topic>Phosphating (coating)</topic><topic>Phosphorus</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Specific capacity</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Luchao</creatorcontrib><creatorcontrib>Ma, Chaoqun</creatorcontrib><creatorcontrib>Yan, Shihai</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Zhao, Wenxi</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Luo, Yonglan</creatorcontrib><creatorcontrib>Zhong, Benhe</creatorcontrib><creatorcontrib>Zhang, Fang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Alshehri, Abdulmohsen Ali</creatorcontrib><creatorcontrib>Alzahrani, Khalid Ahmed</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><creatorcontrib>Sun, Xuping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Luchao</au><au>Ma, Chaoqun</au><au>Yan, Shihai</au><au>Wu, Zhenguo</au><au>Zhao, Wenxi</au><au>Liu, Qian</au><au>Luo, Yonglan</au><au>Zhong, Benhe</au><au>Zhang, Fang</au><au>Liu, Yang</au><au>Alshehri, Abdulmohsen Ali</au><au>Alzahrani, Khalid Ahmed</au><au>Guo, Xiaodong</au><au>Sun, Xuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022</date><risdate>2022</risdate><volume>15</volume><issue>1</issue><spage>186</spage><epage>194</epage><pages>186-194</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Heteroatom doping is one of the most promising strategies toward regulating intrinsically sluggish electronic conductivity and kinetic reaction of transition metal oxides for enhancing their lithium storage. Herein, we designed phosphorus-doped NiMoO
4
nanorods (P-NiMoO
4
) by using a facile hydrothermal method and subsequent low-temperature phosphorization treatment. Phosphorus doping played an indispensable role in significantly improving electronic conductivity and the Li
+
diffusion kinetics of NiMoO
4
materials. Experimental investigation and density functional theory calculation demonstrated that phosphorus doping can expand the interplanar spacing and alter electronic structures of NiMoO
4
nanorods. Meanwhile, the introduced phosphorus dopant can generate some oxygen vacancies on the surface of NiMoO
4
, which can accelerate Li
+
diffusion kinetics and provide more active site for lithium storage. As excepted, P-NiMoO
4
electrode delivered a high specific capacity (1,130 mAh·g
−1
at 100 mA·g
−1
after 100 cycles), outstanding cycling durability (945 mAh·g
−1
at 500 mA·g
−1
over 200 cycles), and impressive rate performance (640 mAh·g
−1
at 2,000 mA·g
−1
) for lithium ion batteries (LIBs). This work could provide a potential strategy for improving intrinsic conductivity of transition metal oxides as high-performance anodes for LIBs.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3455-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022, Vol.15 (1), p.186-194 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2594891594 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anodes Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Conductivity Density functional theory Doping Kinetics Lithium Lithium-ion batteries Low temperature Materials Science Metal oxides Molybdates Nanorods Nanotechnology Nickel compounds Phosphating (coating) Phosphorus Rechargeable batteries Research Article Specific capacity Transition metal oxides |
title | Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20intrinsic%20electronic%20conductivity%20of%20NiMoO4%20anodes%20by%20phosphorous%20doping%20for%20high%20lithium%20storage&rft.jtitle=Nano%20research&rft.au=Yue,%20Luchao&rft.date=2022&rft.volume=15&rft.issue=1&rft.spage=186&rft.epage=194&rft.pages=186-194&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3455-3&rft_dat=%3Cproquest_cross%3E2594891594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594891594&rft_id=info:pmid/&rfr_iscdi=true |