Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses

Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2022-01, Vol.105 (1), p.193-206
Hauptverfasser: Clark, Nicholas L., Chuang, Shih‐Yi, Mauro, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue 1
container_start_page 193
container_title Journal of the American Ceramic Society
container_volume 105
creator Clark, Nicholas L.
Chuang, Shih‐Yi
Mauro, John C.
description Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.
doi_str_mv 10.1111/jace.18050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2594843042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594843042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3010-6f805b987125190e115a93f3f25b9daaa5208bd99885eb7da2ee340373dd7acf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKsXP0HAm7A1j003OZZSXyheFLyFaTarKelmTTZKv73brmfnMszMb15_hC4pmdHBbjZg7IxKIsgRmlAhaMEUnR-jCSGEFZVk5BSdpbQZQqpkOUHvz87EkPqYTZ8jeGy_g8-9Cy0ODa5j6LztcfcJyeJkO4hwqLkWG_DG5S0Gn7euDcl5Z6C3-MNDSjado5MGfLIXf36K3m5Xr8v74unl7mG5eCoMJ5QU82Y4dq1kRZmgilhKBSje8IYN2RoABCNyXSslpbDrqgZmLS8Jr3hdV2AaPkVX49wuhq9sU683Icd2WKmZUKUsOSnZQF2P1P7ZFG2ju-i2EHeaEr1XTu-V0wflBpiO8I_zdvcPqR8Xy9XY8wuLlXHF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594843042</pqid></control><display><type>article</type><title>Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Clark, Nicholas L. ; Chuang, Shih‐Yi ; Mauro, John C.</creator><creatorcontrib>Clark, Nicholas L. ; Chuang, Shih‐Yi ; Mauro, John C.</creatorcontrib><description>Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18050</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminosilicates ; Aluminum silicates ; Brownian motion ; Calcium ; calcium aluminosilicates ; Coalescing ; coarsening ; Diffusion barriers ; Domains ; Droplets ; Fracture toughness ; glass ; Heat treating ; Heat treatment ; kinetics ; microstructure ; nanodomains ; Phase separation ; Silicon dioxide</subject><ispartof>Journal of the American Ceramic Society, 2022-01, Vol.105 (1), p.193-206</ispartof><rights>2021 The American Ceramic Society</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3010-6f805b987125190e115a93f3f25b9daaa5208bd99885eb7da2ee340373dd7acf3</citedby><cites>FETCH-LOGICAL-c3010-6f805b987125190e115a93f3f25b9daaa5208bd99885eb7da2ee340373dd7acf3</cites><orcidid>0000-0002-4319-3530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Clark, Nicholas L.</creatorcontrib><creatorcontrib>Chuang, Shih‐Yi</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><title>Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses</title><title>Journal of the American Ceramic Society</title><description>Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Brownian motion</subject><subject>Calcium</subject><subject>calcium aluminosilicates</subject><subject>Coalescing</subject><subject>coarsening</subject><subject>Diffusion barriers</subject><subject>Domains</subject><subject>Droplets</subject><subject>Fracture toughness</subject><subject>glass</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>kinetics</subject><subject>microstructure</subject><subject>nanodomains</subject><subject>Phase separation</subject><subject>Silicon dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKsXP0HAm7A1j003OZZSXyheFLyFaTarKelmTTZKv73brmfnMszMb15_hC4pmdHBbjZg7IxKIsgRmlAhaMEUnR-jCSGEFZVk5BSdpbQZQqpkOUHvz87EkPqYTZ8jeGy_g8-9Cy0ODa5j6LztcfcJyeJkO4hwqLkWG_DG5S0Gn7euDcl5Z6C3-MNDSjado5MGfLIXf36K3m5Xr8v74unl7mG5eCoMJ5QU82Y4dq1kRZmgilhKBSje8IYN2RoABCNyXSslpbDrqgZmLS8Jr3hdV2AaPkVX49wuhq9sU683Icd2WKmZUKUsOSnZQF2P1P7ZFG2ju-i2EHeaEr1XTu-V0wflBpiO8I_zdvcPqR8Xy9XY8wuLlXHF</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Clark, Nicholas L.</creator><creator>Chuang, Shih‐Yi</creator><creator>Mauro, John C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid></search><sort><creationdate>202201</creationdate><title>Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses</title><author>Clark, Nicholas L. ; Chuang, Shih‐Yi ; Mauro, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3010-6f805b987125190e115a93f3f25b9daaa5208bd99885eb7da2ee340373dd7acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Brownian motion</topic><topic>Calcium</topic><topic>calcium aluminosilicates</topic><topic>Coalescing</topic><topic>coarsening</topic><topic>Diffusion barriers</topic><topic>Domains</topic><topic>Droplets</topic><topic>Fracture toughness</topic><topic>glass</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>kinetics</topic><topic>microstructure</topic><topic>nanodomains</topic><topic>Phase separation</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Nicholas L.</creatorcontrib><creatorcontrib>Chuang, Shih‐Yi</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Nicholas L.</au><au>Chuang, Shih‐Yi</au><au>Mauro, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-01</date><risdate>2022</risdate><volume>105</volume><issue>1</issue><spage>193</spage><epage>206</epage><pages>193-206</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18050</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-01, Vol.105 (1), p.193-206
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2594843042
source Wiley Online Library Journals Frontfile Complete
subjects Aluminosilicates
Aluminum silicates
Brownian motion
Calcium
calcium aluminosilicates
Coalescing
coarsening
Diffusion barriers
Domains
Droplets
Fracture toughness
glass
Heat treating
Heat treatment
kinetics
microstructure
nanodomains
Phase separation
Silicon dioxide
title Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20of%20droplet%20phase%20separation%20in%20calcium%20aluminosilicate%20glasses&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Clark,%20Nicholas%20L.&rft.date=2022-01&rft.volume=105&rft.issue=1&rft.spage=193&rft.epage=206&rft.pages=193-206&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18050&rft_dat=%3Cproquest_cross%3E2594843042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594843042&rft_id=info:pmid/&rfr_iscdi=true