Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses
Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a trans...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2022-01, Vol.105 (1), p.193-206 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 1 |
container_start_page | 193 |
container_title | Journal of the American Ceramic Society |
container_volume | 105 |
creator | Clark, Nicholas L. Chuang, Shih‐Yi Mauro, John C. |
description | Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible. |
doi_str_mv | 10.1111/jace.18050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2594843042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594843042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3010-6f805b987125190e115a93f3f25b9daaa5208bd99885eb7da2ee340373dd7acf3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKsXP0HAm7A1j003OZZSXyheFLyFaTarKelmTTZKv73brmfnMszMb15_hC4pmdHBbjZg7IxKIsgRmlAhaMEUnR-jCSGEFZVk5BSdpbQZQqpkOUHvz87EkPqYTZ8jeGy_g8-9Cy0ODa5j6LztcfcJyeJkO4hwqLkWG_DG5S0Gn7euDcl5Z6C3-MNDSjado5MGfLIXf36K3m5Xr8v74unl7mG5eCoMJ5QU82Y4dq1kRZmgilhKBSje8IYN2RoABCNyXSslpbDrqgZmLS8Jr3hdV2AaPkVX49wuhq9sU683Icd2WKmZUKUsOSnZQF2P1P7ZFG2ju-i2EHeaEr1XTu-V0wflBpiO8I_zdvcPqR8Xy9XY8wuLlXHF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594843042</pqid></control><display><type>article</type><title>Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Clark, Nicholas L. ; Chuang, Shih‐Yi ; Mauro, John C.</creator><creatorcontrib>Clark, Nicholas L. ; Chuang, Shih‐Yi ; Mauro, John C.</creatorcontrib><description>Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18050</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminosilicates ; Aluminum silicates ; Brownian motion ; Calcium ; calcium aluminosilicates ; Coalescing ; coarsening ; Diffusion barriers ; Domains ; Droplets ; Fracture toughness ; glass ; Heat treating ; Heat treatment ; kinetics ; microstructure ; nanodomains ; Phase separation ; Silicon dioxide</subject><ispartof>Journal of the American Ceramic Society, 2022-01, Vol.105 (1), p.193-206</ispartof><rights>2021 The American Ceramic Society</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3010-6f805b987125190e115a93f3f25b9daaa5208bd99885eb7da2ee340373dd7acf3</citedby><cites>FETCH-LOGICAL-c3010-6f805b987125190e115a93f3f25b9daaa5208bd99885eb7da2ee340373dd7acf3</cites><orcidid>0000-0002-4319-3530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Clark, Nicholas L.</creatorcontrib><creatorcontrib>Chuang, Shih‐Yi</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><title>Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses</title><title>Journal of the American Ceramic Society</title><description>Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Brownian motion</subject><subject>Calcium</subject><subject>calcium aluminosilicates</subject><subject>Coalescing</subject><subject>coarsening</subject><subject>Diffusion barriers</subject><subject>Domains</subject><subject>Droplets</subject><subject>Fracture toughness</subject><subject>glass</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>kinetics</subject><subject>microstructure</subject><subject>nanodomains</subject><subject>Phase separation</subject><subject>Silicon dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWKsXP0HAm7A1j003OZZSXyheFLyFaTarKelmTTZKv73brmfnMszMb15_hC4pmdHBbjZg7IxKIsgRmlAhaMEUnR-jCSGEFZVk5BSdpbQZQqpkOUHvz87EkPqYTZ8jeGy_g8-9Cy0ODa5j6LztcfcJyeJkO4hwqLkWG_DG5S0Gn7euDcl5Z6C3-MNDSjado5MGfLIXf36K3m5Xr8v74unl7mG5eCoMJ5QU82Y4dq1kRZmgilhKBSje8IYN2RoABCNyXSslpbDrqgZmLS8Jr3hdV2AaPkVX49wuhq9sU683Icd2WKmZUKUsOSnZQF2P1P7ZFG2ju-i2EHeaEr1XTu-V0wflBpiO8I_zdvcPqR8Xy9XY8wuLlXHF</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Clark, Nicholas L.</creator><creator>Chuang, Shih‐Yi</creator><creator>Mauro, John C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid></search><sort><creationdate>202201</creationdate><title>Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses</title><author>Clark, Nicholas L. ; Chuang, Shih‐Yi ; Mauro, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3010-6f805b987125190e115a93f3f25b9daaa5208bd99885eb7da2ee340373dd7acf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Brownian motion</topic><topic>Calcium</topic><topic>calcium aluminosilicates</topic><topic>Coalescing</topic><topic>coarsening</topic><topic>Diffusion barriers</topic><topic>Domains</topic><topic>Droplets</topic><topic>Fracture toughness</topic><topic>glass</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>kinetics</topic><topic>microstructure</topic><topic>nanodomains</topic><topic>Phase separation</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Nicholas L.</creatorcontrib><creatorcontrib>Chuang, Shih‐Yi</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Nicholas L.</au><au>Chuang, Shih‐Yi</au><au>Mauro, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-01</date><risdate>2022</risdate><volume>105</volume><issue>1</issue><spage>193</spage><epage>206</epage><pages>193-206</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18050</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2022-01, Vol.105 (1), p.193-206 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2594843042 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminosilicates Aluminum silicates Brownian motion Calcium calcium aluminosilicates Coalescing coarsening Diffusion barriers Domains Droplets Fracture toughness glass Heat treating Heat treatment kinetics microstructure nanodomains Phase separation Silicon dioxide |
title | Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20of%20droplet%20phase%20separation%20in%20calcium%20aluminosilicate%20glasses&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Clark,%20Nicholas%20L.&rft.date=2022-01&rft.volume=105&rft.issue=1&rft.spage=193&rft.epage=206&rft.pages=193-206&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18050&rft_dat=%3Cproquest_cross%3E2594843042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594843042&rft_id=info:pmid/&rfr_iscdi=true |