Multifunctional performance of Ti2AlC MAX phase/2D braided alumina fiber laminates

The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three‐stage pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2022-01, Vol.105 (1), p.120-130
Hauptverfasser: Gonzalez‐Julian, Jesus, Kraleva, Irina, Belmonte, Manuel, Jung, Fabian, Gries, Thomas, Bermejo, Raul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 1
container_start_page 120
container_title Journal of the American Ceramic Society
container_volume 105
creator Gonzalez‐Julian, Jesus
Kraleva, Irina
Belmonte, Manuel
Jung, Fabian
Gries, Thomas
Bermejo, Raul
description The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three‐stage process consisting of spooling, braiding with an angle of 0° and ±60° and the separation to single‐layer fabric. The laminates are processed by layer‐by‐layer stacking, where 3 two‐dimensional alumina braids are interleaved between Ti2AlC layers, followed by full densification using a Field‐Assisted Sintering Technology/Spark Plasma Sintering. The multifunctional response of the laminates, as well as for the monolithic Ti2AlC, is evaluated, in particular, the thermal and electrical conductivity, the oxidation resistance, and the mechanical response. The laminates exhibit an anisotropic thermal and electrical behavior, and an excellent oxidation resistance at 1200℃ in air for a week. A relatively lower characteristic biaxial strength and Weibull modulus (i.e., σ0 = 590 MPa and m = 9) for the laminate compared to the high values measured in the monolithic Ti2AlC (i.e., σ0 = 790 MPa and m = 29) indicates the need but also the potential of optimizing MAX‐phase layered structures for multifunctional performance.
doi_str_mv 10.1111/jace.18043
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2594843028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594843028</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2613-cad55f3ba22cf21b9e4fec2a7ac9f38fb6d4d2a383313b50797cb8b31acf0d4e3</originalsourceid><addsrcrecordid>eNotkF1LwzAYhYMoOKc3_oKA193y1Ta9LHV-sSHIBO_CmzTBjK6tSYvs39ttvjfnPXA4cB6E7ilZ0OmWOzB2QSUR_ALNaJrShBU0u0QzQghLcsnINbqJcTdZWkgxQx-bsRm8G1sz-K6FBvc2uC7soTUWdw5vPSubCm_KL9x_Q7RL9oh1AF_bGkMz7n0L2HltA27gaAYbb9GVgybau3-do8-n1bZ6Sdbvz69VuU56llGeGKjT1HENjBnHqC6scNYwyMEUjkuns1rUDLjknHKdkrzIjZaaUzCO1MLyOXo49_ah-xltHNSuG8O0ISqWFkIKTpicUvSc-vWNPag--D2Eg6JEHYGpIzB1Aqbeymp1-vgfcIlgdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594843028</pqid></control><display><type>article</type><title>Multifunctional performance of Ti2AlC MAX phase/2D braided alumina fiber laminates</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gonzalez‐Julian, Jesus ; Kraleva, Irina ; Belmonte, Manuel ; Jung, Fabian ; Gries, Thomas ; Bermejo, Raul</creator><creatorcontrib>Gonzalez‐Julian, Jesus ; Kraleva, Irina ; Belmonte, Manuel ; Jung, Fabian ; Gries, Thomas ; Bermejo, Raul</creatorcontrib><description>The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three‐stage process consisting of spooling, braiding with an angle of 0° and ±60° and the separation to single‐layer fabric. The laminates are processed by layer‐by‐layer stacking, where 3 two‐dimensional alumina braids are interleaved between Ti2AlC layers, followed by full densification using a Field‐Assisted Sintering Technology/Spark Plasma Sintering. The multifunctional response of the laminates, as well as for the monolithic Ti2AlC, is evaluated, in particular, the thermal and electrical conductivity, the oxidation resistance, and the mechanical response. The laminates exhibit an anisotropic thermal and electrical behavior, and an excellent oxidation resistance at 1200℃ in air for a week. A relatively lower characteristic biaxial strength and Weibull modulus (i.e., σ0 = 590 MPa and m = 9) for the laminate compared to the high values measured in the monolithic Ti2AlC (i.e., σ0 = 790 MPa and m = 29) indicates the need but also the potential of optimizing MAX‐phase layered structures for multifunctional performance.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18043</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Braiding ; Densification ; Electrical resistivity ; fibers ; Laminates ; MAX phases ; Mechanical analysis ; Oxidation ; Oxidation resistance ; Plasma sintering ; Sintering (powder metallurgy) ; Spark plasma sintering ; Spooling ; strength ; Weibull modulus ; Weibull statistics</subject><ispartof>Journal of the American Ceramic Society, 2022-01, Vol.105 (1), p.120-130</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of American Ceramic Society (ACERS)</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6668-6920 ; 0000-0002-4217-8419 ; 0000-0002-6891-3653 ; 0000-0002-9677-5171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18043$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18043$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gonzalez‐Julian, Jesus</creatorcontrib><creatorcontrib>Kraleva, Irina</creatorcontrib><creatorcontrib>Belmonte, Manuel</creatorcontrib><creatorcontrib>Jung, Fabian</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><creatorcontrib>Bermejo, Raul</creatorcontrib><title>Multifunctional performance of Ti2AlC MAX phase/2D braided alumina fiber laminates</title><title>Journal of the American Ceramic Society</title><description>The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three‐stage process consisting of spooling, braiding with an angle of 0° and ±60° and the separation to single‐layer fabric. The laminates are processed by layer‐by‐layer stacking, where 3 two‐dimensional alumina braids are interleaved between Ti2AlC layers, followed by full densification using a Field‐Assisted Sintering Technology/Spark Plasma Sintering. The multifunctional response of the laminates, as well as for the monolithic Ti2AlC, is evaluated, in particular, the thermal and electrical conductivity, the oxidation resistance, and the mechanical response. The laminates exhibit an anisotropic thermal and electrical behavior, and an excellent oxidation resistance at 1200℃ in air for a week. A relatively lower characteristic biaxial strength and Weibull modulus (i.e., σ0 = 590 MPa and m = 9) for the laminate compared to the high values measured in the monolithic Ti2AlC (i.e., σ0 = 790 MPa and m = 29) indicates the need but also the potential of optimizing MAX‐phase layered structures for multifunctional performance.</description><subject>Aluminum oxide</subject><subject>Braiding</subject><subject>Densification</subject><subject>Electrical resistivity</subject><subject>fibers</subject><subject>Laminates</subject><subject>MAX phases</subject><subject>Mechanical analysis</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Plasma sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Spooling</subject><subject>strength</subject><subject>Weibull modulus</subject><subject>Weibull statistics</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNotkF1LwzAYhYMoOKc3_oKA193y1Ta9LHV-sSHIBO_CmzTBjK6tSYvs39ttvjfnPXA4cB6E7ilZ0OmWOzB2QSUR_ALNaJrShBU0u0QzQghLcsnINbqJcTdZWkgxQx-bsRm8G1sz-K6FBvc2uC7soTUWdw5vPSubCm_KL9x_Q7RL9oh1AF_bGkMz7n0L2HltA27gaAYbb9GVgybau3-do8-n1bZ6Sdbvz69VuU56llGeGKjT1HENjBnHqC6scNYwyMEUjkuns1rUDLjknHKdkrzIjZaaUzCO1MLyOXo49_ah-xltHNSuG8O0ISqWFkIKTpicUvSc-vWNPag--D2Eg6JEHYGpIzB1Aqbeymp1-vgfcIlgdw</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Gonzalez‐Julian, Jesus</creator><creator>Kraleva, Irina</creator><creator>Belmonte, Manuel</creator><creator>Jung, Fabian</creator><creator>Gries, Thomas</creator><creator>Bermejo, Raul</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6668-6920</orcidid><orcidid>https://orcid.org/0000-0002-4217-8419</orcidid><orcidid>https://orcid.org/0000-0002-6891-3653</orcidid><orcidid>https://orcid.org/0000-0002-9677-5171</orcidid></search><sort><creationdate>202201</creationdate><title>Multifunctional performance of Ti2AlC MAX phase/2D braided alumina fiber laminates</title><author>Gonzalez‐Julian, Jesus ; Kraleva, Irina ; Belmonte, Manuel ; Jung, Fabian ; Gries, Thomas ; Bermejo, Raul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2613-cad55f3ba22cf21b9e4fec2a7ac9f38fb6d4d2a383313b50797cb8b31acf0d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Braiding</topic><topic>Densification</topic><topic>Electrical resistivity</topic><topic>fibers</topic><topic>Laminates</topic><topic>MAX phases</topic><topic>Mechanical analysis</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Plasma sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Spooling</topic><topic>strength</topic><topic>Weibull modulus</topic><topic>Weibull statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez‐Julian, Jesus</creatorcontrib><creatorcontrib>Kraleva, Irina</creatorcontrib><creatorcontrib>Belmonte, Manuel</creatorcontrib><creatorcontrib>Jung, Fabian</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><creatorcontrib>Bermejo, Raul</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez‐Julian, Jesus</au><au>Kraleva, Irina</au><au>Belmonte, Manuel</au><au>Jung, Fabian</au><au>Gries, Thomas</au><au>Bermejo, Raul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional performance of Ti2AlC MAX phase/2D braided alumina fiber laminates</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-01</date><risdate>2022</risdate><volume>105</volume><issue>1</issue><spage>120</spage><epage>130</epage><pages>120-130</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The processing and characterization of laminates based on Ti2AlC MAX phase, as matrix, and triaxial alumina braids, as reinforcing phase, are presented. Ti2AlC powders with a mean particle size below 1 µm are synthesized, while commercial 3M Nextel 610 alumina fibers are braided in a three‐stage process consisting of spooling, braiding with an angle of 0° and ±60° and the separation to single‐layer fabric. The laminates are processed by layer‐by‐layer stacking, where 3 two‐dimensional alumina braids are interleaved between Ti2AlC layers, followed by full densification using a Field‐Assisted Sintering Technology/Spark Plasma Sintering. The multifunctional response of the laminates, as well as for the monolithic Ti2AlC, is evaluated, in particular, the thermal and electrical conductivity, the oxidation resistance, and the mechanical response. The laminates exhibit an anisotropic thermal and electrical behavior, and an excellent oxidation resistance at 1200℃ in air for a week. A relatively lower characteristic biaxial strength and Weibull modulus (i.e., σ0 = 590 MPa and m = 9) for the laminate compared to the high values measured in the monolithic Ti2AlC (i.e., σ0 = 790 MPa and m = 29) indicates the need but also the potential of optimizing MAX‐phase layered structures for multifunctional performance.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18043</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6668-6920</orcidid><orcidid>https://orcid.org/0000-0002-4217-8419</orcidid><orcidid>https://orcid.org/0000-0002-6891-3653</orcidid><orcidid>https://orcid.org/0000-0002-9677-5171</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-01, Vol.105 (1), p.120-130
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2594843028
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Braiding
Densification
Electrical resistivity
fibers
Laminates
MAX phases
Mechanical analysis
Oxidation
Oxidation resistance
Plasma sintering
Sintering (powder metallurgy)
Spark plasma sintering
Spooling
strength
Weibull modulus
Weibull statistics
title Multifunctional performance of Ti2AlC MAX phase/2D braided alumina fiber laminates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20performance%20of%20Ti2AlC%20MAX%20phase/2D%20braided%20alumina%20fiber%20laminates&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Gonzalez%E2%80%90Julian,%20Jesus&rft.date=2022-01&rft.volume=105&rft.issue=1&rft.spage=120&rft.epage=130&rft.pages=120-130&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18043&rft_dat=%3Cproquest_wiley%3E2594843028%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594843028&rft_id=info:pmid/&rfr_iscdi=true