Amphiboles and phyllosilicates in the A-type Mandira granite massif, Graciosa Province, SE Brazil; textures, composition and crystallisation conditions
Amphibole and biotite were the principal mafic minerals precipitated during the magmatic and post-magmatic (including hydrothermal) crystallisation stages of coeval metaluminous to slightly peraluminous syenogranites and peralkaline alkali-feldspar granites of the Mandira Granite Massif, in the post...
Gespeichert in:
Veröffentlicht in: | Mineralogical magazine 2021-10, Vol.85 (5), p.784-807 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | 5 |
container_start_page | 784 |
container_title | Mineralogical magazine |
container_volume | 85 |
creator | Siachoque, Astrid Santos, Caio A Vlach, Silvio R. F |
description | Amphibole and biotite were the principal mafic minerals precipitated during the magmatic and post-magmatic (including hydrothermal) crystallisation stages of coeval metaluminous to slightly peraluminous syenogranites and peralkaline alkali-feldspar granites of the Mandira Granite Massif, in the post-collisional A-type Graciosa Province, S-SE Brazil. Magmatic calcic (ferro-ferri-hornblende and hastingsite) amphiboles occur in the metaluminous syenogranites, whereas calcic (ferro-edenite), sodic-calcic (ferro-ferri-winchite) and sodic (arfvedsonite and riebeckite) amphiboles occur in peralkaline alkali-feldspar granites. Rare earth element (REE) contents decrease from hornblende to winchite and riebeckite, and the partition coefficients indicate increasing compatibility from light rare earth elements (LREE) to heavy rare earth elements (HREE), with a marked preference for the HREE over the LREE in the sodic-calcic and, particularly, the sodic amphiboles. Post-magmatic calcic- (ferro-actinolite) and sodic- (riebeckite) amphiboles are also present in the peralkaline granites. Magmatic biotite (annite) is dominant in syenogranites, whereas post-magmatic annite and late-to post-magmatic annite evolving to siderophyllite occurs in the peralkaline granites. Typical hydrothermal phyllosilicates are chlorite (chamosite) in syenogranites and related greisens, and ferri-stilpnomelane which is present in both peralkaline granites and metaluminous syenogranites. Lithostatic pressure estimates suggest that the main granites were emplaced under pressures of ∼93-230 MPa, with close-to-liquidus temperatures varying from ∼830°C for syenogranites to ∼900°C for the peralkaline granites. The original magmas crystallised mainly under relatively reduced (buffered at ∼-1≤QFM≤0), and more oxidising (somewhat above QFM) environments, respectively. Chlorite, replacing biotite in syenogranites and as the main mineral in the related greisens, permits the temperature of the main hydrothermal event to have taken place between 250 and 272°C. Estimated log (fHF/fHCl) values from biotite compositions vary from ∼-2 to -1 (syenogranites) and ∼-3.5 to -2 (peralkaline granites) and indicate F preference over Cl in the hydrothermal fluid phase. |
doi_str_mv | 10.1180/mgm.2021.65 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2594522556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2594522556</sourcerecordid><originalsourceid>FETCH-LOGICAL-a320t-299678260b31c5a51a67830e46d8a767141ae3294d3128b95bf8272199540da73</originalsourceid><addsrcrecordid>eNpNkd1KAzEQhYMoWH-ufIGAl3Zrkt1kd_GqFv9AUVDBuzDNpm0ku1mTVK0v4uuaqqBXM3P4OMOcQeiAkhGlFTlu5-2IEUZHgm-gAS1KmlWEsU00IISJrBD0aRvthPBMCC0oZwP0OW77hZk6qwOGrsH9YmWtC8YaBTFppsNxofE4i6te45uEGA947qEzUeMWQjCzIb7woIwLgO-8ezWd0kN8f4ZPPXwYe4Kjfo9Lr8MQK9f2yTwa131vU34VIlhrAnxryiX_dRf20NYMbND7v3UXPZ6fPUwus-vbi6vJ-DqDnJGYsboWZcUEmeZUceAU0pgTXYimglKU6UrQOauLJqesmtZ8OqtYyWhd84I0UOa76PDHt_fuZalDlM9u6bu0UjJeF5wxzkWijn4o5V0IXs9k700LfiUpkevkZUperpOXgv_Rc-2CMjrl8ea8bf5Zp6dIQgoiyvwLqxWGmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2594522556</pqid></control><display><type>article</type><title>Amphiboles and phyllosilicates in the A-type Mandira granite massif, Graciosa Province, SE Brazil; textures, composition and crystallisation conditions</title><source>Cambridge Journals</source><creator>Siachoque, Astrid ; Santos, Caio A ; Vlach, Silvio R. F</creator><creatorcontrib>Siachoque, Astrid ; Santos, Caio A ; Vlach, Silvio R. F</creatorcontrib><description>Amphibole and biotite were the principal mafic minerals precipitated during the magmatic and post-magmatic (including hydrothermal) crystallisation stages of coeval metaluminous to slightly peraluminous syenogranites and peralkaline alkali-feldspar granites of the Mandira Granite Massif, in the post-collisional A-type Graciosa Province, S-SE Brazil. Magmatic calcic (ferro-ferri-hornblende and hastingsite) amphiboles occur in the metaluminous syenogranites, whereas calcic (ferro-edenite), sodic-calcic (ferro-ferri-winchite) and sodic (arfvedsonite and riebeckite) amphiboles occur in peralkaline alkali-feldspar granites. Rare earth element (REE) contents decrease from hornblende to winchite and riebeckite, and the partition coefficients indicate increasing compatibility from light rare earth elements (LREE) to heavy rare earth elements (HREE), with a marked preference for the HREE over the LREE in the sodic-calcic and, particularly, the sodic amphiboles. Post-magmatic calcic- (ferro-actinolite) and sodic- (riebeckite) amphiboles are also present in the peralkaline granites. Magmatic biotite (annite) is dominant in syenogranites, whereas post-magmatic annite and late-to post-magmatic annite evolving to siderophyllite occurs in the peralkaline granites. Typical hydrothermal phyllosilicates are chlorite (chamosite) in syenogranites and related greisens, and ferri-stilpnomelane which is present in both peralkaline granites and metaluminous syenogranites. Lithostatic pressure estimates suggest that the main granites were emplaced under pressures of ∼93-230 MPa, with close-to-liquidus temperatures varying from ∼830°C for syenogranites to ∼900°C for the peralkaline granites. The original magmas crystallised mainly under relatively reduced (buffered at ∼-1≤QFM≤0), and more oxidising (somewhat above QFM) environments, respectively. Chlorite, replacing biotite in syenogranites and as the main mineral in the related greisens, permits the temperature of the main hydrothermal event to have taken place between 250 and 272°C. Estimated log (fHF/fHCl) values from biotite compositions vary from ∼-2 to -1 (syenogranites) and ∼-3.5 to -2 (peralkaline granites) and indicate F preference over Cl in the hydrothermal fluid phase.</description><identifier>ISSN: 0026-461X</identifier><identifier>EISSN: 1471-8022</identifier><identifier>DOI: 10.1180/mgm.2021.65</identifier><language>eng</language><publisher>London: Mineralogical Society</publisher><subject>A-type granites ; amphibole group ; biotite ; Brazil ; chain silicates ; chemical composition ; crystallization ; Earth ; emplacement ; fluid pressure ; Geology ; Graciosa Province ; Granite ; granites ; granosyenite ; hydrothermal conditions ; igneous and metamorphic rocks ; igneous rocks ; intrusions ; Mandira Massif ; metals ; mica group ; mineral composition ; Mineralogy ; P-T conditions ; peralkalic composition ; Petrology ; plutonic rocks ; Quartz ; Rare earth elements ; rare earths ; Sao Paulo Brazil ; sheet silicates ; silicates ; South America ; syenites ; trace elements</subject><ispartof>Mineralogical magazine, 2021-10, Vol.85 (5), p.784-807</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland</rights><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a320t-299678260b31c5a51a67830e46d8a767141ae3294d3128b95bf8272199540da73</citedby><cites>FETCH-LOGICAL-a320t-299678260b31c5a51a67830e46d8a767141ae3294d3128b95bf8272199540da73</cites><orcidid>0000-0001-7132-8167 ; 0000-0001-9877-057X ; 0000-0001-5846-0366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Siachoque, Astrid</creatorcontrib><creatorcontrib>Santos, Caio A</creatorcontrib><creatorcontrib>Vlach, Silvio R. F</creatorcontrib><title>Amphiboles and phyllosilicates in the A-type Mandira granite massif, Graciosa Province, SE Brazil; textures, composition and crystallisation conditions</title><title>Mineralogical magazine</title><description>Amphibole and biotite were the principal mafic minerals precipitated during the magmatic and post-magmatic (including hydrothermal) crystallisation stages of coeval metaluminous to slightly peraluminous syenogranites and peralkaline alkali-feldspar granites of the Mandira Granite Massif, in the post-collisional A-type Graciosa Province, S-SE Brazil. Magmatic calcic (ferro-ferri-hornblende and hastingsite) amphiboles occur in the metaluminous syenogranites, whereas calcic (ferro-edenite), sodic-calcic (ferro-ferri-winchite) and sodic (arfvedsonite and riebeckite) amphiboles occur in peralkaline alkali-feldspar granites. Rare earth element (REE) contents decrease from hornblende to winchite and riebeckite, and the partition coefficients indicate increasing compatibility from light rare earth elements (LREE) to heavy rare earth elements (HREE), with a marked preference for the HREE over the LREE in the sodic-calcic and, particularly, the sodic amphiboles. Post-magmatic calcic- (ferro-actinolite) and sodic- (riebeckite) amphiboles are also present in the peralkaline granites. Magmatic biotite (annite) is dominant in syenogranites, whereas post-magmatic annite and late-to post-magmatic annite evolving to siderophyllite occurs in the peralkaline granites. Typical hydrothermal phyllosilicates are chlorite (chamosite) in syenogranites and related greisens, and ferri-stilpnomelane which is present in both peralkaline granites and metaluminous syenogranites. Lithostatic pressure estimates suggest that the main granites were emplaced under pressures of ∼93-230 MPa, with close-to-liquidus temperatures varying from ∼830°C for syenogranites to ∼900°C for the peralkaline granites. The original magmas crystallised mainly under relatively reduced (buffered at ∼-1≤QFM≤0), and more oxidising (somewhat above QFM) environments, respectively. Chlorite, replacing biotite in syenogranites and as the main mineral in the related greisens, permits the temperature of the main hydrothermal event to have taken place between 250 and 272°C. Estimated log (fHF/fHCl) values from biotite compositions vary from ∼-2 to -1 (syenogranites) and ∼-3.5 to -2 (peralkaline granites) and indicate F preference over Cl in the hydrothermal fluid phase.</description><subject>A-type granites</subject><subject>amphibole group</subject><subject>biotite</subject><subject>Brazil</subject><subject>chain silicates</subject><subject>chemical composition</subject><subject>crystallization</subject><subject>Earth</subject><subject>emplacement</subject><subject>fluid pressure</subject><subject>Geology</subject><subject>Graciosa Province</subject><subject>Granite</subject><subject>granites</subject><subject>granosyenite</subject><subject>hydrothermal conditions</subject><subject>igneous and metamorphic rocks</subject><subject>igneous rocks</subject><subject>intrusions</subject><subject>Mandira Massif</subject><subject>metals</subject><subject>mica group</subject><subject>mineral composition</subject><subject>Mineralogy</subject><subject>P-T conditions</subject><subject>peralkalic composition</subject><subject>Petrology</subject><subject>plutonic rocks</subject><subject>Quartz</subject><subject>Rare earth elements</subject><subject>rare earths</subject><subject>Sao Paulo Brazil</subject><subject>sheet silicates</subject><subject>silicates</subject><subject>South America</subject><subject>syenites</subject><subject>trace elements</subject><issn>0026-461X</issn><issn>1471-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkd1KAzEQhYMoWH-ufIGAl3Zrkt1kd_GqFv9AUVDBuzDNpm0ku1mTVK0v4uuaqqBXM3P4OMOcQeiAkhGlFTlu5-2IEUZHgm-gAS1KmlWEsU00IISJrBD0aRvthPBMCC0oZwP0OW77hZk6qwOGrsH9YmWtC8YaBTFppsNxofE4i6te45uEGA947qEzUeMWQjCzIb7woIwLgO-8ezWd0kN8f4ZPPXwYe4Kjfo9Lr8MQK9f2yTwa131vU34VIlhrAnxryiX_dRf20NYMbND7v3UXPZ6fPUwus-vbi6vJ-DqDnJGYsboWZcUEmeZUceAU0pgTXYimglKU6UrQOauLJqesmtZ8OqtYyWhd84I0UOa76PDHt_fuZalDlM9u6bu0UjJeF5wxzkWijn4o5V0IXs9k700LfiUpkevkZUperpOXgv_Rc-2CMjrl8ea8bf5Zp6dIQgoiyvwLqxWGmw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Siachoque, Astrid</creator><creator>Santos, Caio A</creator><creator>Vlach, Silvio R. F</creator><general>Mineralogical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0001-7132-8167</orcidid><orcidid>https://orcid.org/0000-0001-9877-057X</orcidid><orcidid>https://orcid.org/0000-0001-5846-0366</orcidid></search><sort><creationdate>20211001</creationdate><title>Amphiboles and phyllosilicates in the A-type Mandira granite massif, Graciosa Province, SE Brazil; textures, composition and crystallisation conditions</title><author>Siachoque, Astrid ; Santos, Caio A ; Vlach, Silvio R. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a320t-299678260b31c5a51a67830e46d8a767141ae3294d3128b95bf8272199540da73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A-type granites</topic><topic>amphibole group</topic><topic>biotite</topic><topic>Brazil</topic><topic>chain silicates</topic><topic>chemical composition</topic><topic>crystallization</topic><topic>Earth</topic><topic>emplacement</topic><topic>fluid pressure</topic><topic>Geology</topic><topic>Graciosa Province</topic><topic>Granite</topic><topic>granites</topic><topic>granosyenite</topic><topic>hydrothermal conditions</topic><topic>igneous and metamorphic rocks</topic><topic>igneous rocks</topic><topic>intrusions</topic><topic>Mandira Massif</topic><topic>metals</topic><topic>mica group</topic><topic>mineral composition</topic><topic>Mineralogy</topic><topic>P-T conditions</topic><topic>peralkalic composition</topic><topic>Petrology</topic><topic>plutonic rocks</topic><topic>Quartz</topic><topic>Rare earth elements</topic><topic>rare earths</topic><topic>Sao Paulo Brazil</topic><topic>sheet silicates</topic><topic>silicates</topic><topic>South America</topic><topic>syenites</topic><topic>trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siachoque, Astrid</creatorcontrib><creatorcontrib>Santos, Caio A</creatorcontrib><creatorcontrib>Vlach, Silvio R. F</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogical magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siachoque, Astrid</au><au>Santos, Caio A</au><au>Vlach, Silvio R. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amphiboles and phyllosilicates in the A-type Mandira granite massif, Graciosa Province, SE Brazil; textures, composition and crystallisation conditions</atitle><jtitle>Mineralogical magazine</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>85</volume><issue>5</issue><spage>784</spage><epage>807</epage><pages>784-807</pages><issn>0026-461X</issn><eissn>1471-8022</eissn><abstract>Amphibole and biotite were the principal mafic minerals precipitated during the magmatic and post-magmatic (including hydrothermal) crystallisation stages of coeval metaluminous to slightly peraluminous syenogranites and peralkaline alkali-feldspar granites of the Mandira Granite Massif, in the post-collisional A-type Graciosa Province, S-SE Brazil. Magmatic calcic (ferro-ferri-hornblende and hastingsite) amphiboles occur in the metaluminous syenogranites, whereas calcic (ferro-edenite), sodic-calcic (ferro-ferri-winchite) and sodic (arfvedsonite and riebeckite) amphiboles occur in peralkaline alkali-feldspar granites. Rare earth element (REE) contents decrease from hornblende to winchite and riebeckite, and the partition coefficients indicate increasing compatibility from light rare earth elements (LREE) to heavy rare earth elements (HREE), with a marked preference for the HREE over the LREE in the sodic-calcic and, particularly, the sodic amphiboles. Post-magmatic calcic- (ferro-actinolite) and sodic- (riebeckite) amphiboles are also present in the peralkaline granites. Magmatic biotite (annite) is dominant in syenogranites, whereas post-magmatic annite and late-to post-magmatic annite evolving to siderophyllite occurs in the peralkaline granites. Typical hydrothermal phyllosilicates are chlorite (chamosite) in syenogranites and related greisens, and ferri-stilpnomelane which is present in both peralkaline granites and metaluminous syenogranites. Lithostatic pressure estimates suggest that the main granites were emplaced under pressures of ∼93-230 MPa, with close-to-liquidus temperatures varying from ∼830°C for syenogranites to ∼900°C for the peralkaline granites. The original magmas crystallised mainly under relatively reduced (buffered at ∼-1≤QFM≤0), and more oxidising (somewhat above QFM) environments, respectively. Chlorite, replacing biotite in syenogranites and as the main mineral in the related greisens, permits the temperature of the main hydrothermal event to have taken place between 250 and 272°C. Estimated log (fHF/fHCl) values from biotite compositions vary from ∼-2 to -1 (syenogranites) and ∼-3.5 to -2 (peralkaline granites) and indicate F preference over Cl in the hydrothermal fluid phase.</abstract><cop>London</cop><pub>Mineralogical Society</pub><doi>10.1180/mgm.2021.65</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-7132-8167</orcidid><orcidid>https://orcid.org/0000-0001-9877-057X</orcidid><orcidid>https://orcid.org/0000-0001-5846-0366</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-461X |
ispartof | Mineralogical magazine, 2021-10, Vol.85 (5), p.784-807 |
issn | 0026-461X 1471-8022 |
language | eng |
recordid | cdi_proquest_journals_2594522556 |
source | Cambridge Journals |
subjects | A-type granites amphibole group biotite Brazil chain silicates chemical composition crystallization Earth emplacement fluid pressure Geology Graciosa Province Granite granites granosyenite hydrothermal conditions igneous and metamorphic rocks igneous rocks intrusions Mandira Massif metals mica group mineral composition Mineralogy P-T conditions peralkalic composition Petrology plutonic rocks Quartz Rare earth elements rare earths Sao Paulo Brazil sheet silicates silicates South America syenites trace elements |
title | Amphiboles and phyllosilicates in the A-type Mandira granite massif, Graciosa Province, SE Brazil; textures, composition and crystallisation conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amphiboles%20and%20phyllosilicates%20in%20the%20A-type%20Mandira%20granite%20massif,%20Graciosa%20Province,%20SE%20Brazil;%20textures,%20composition%20and%20crystallisation%20conditions&rft.jtitle=Mineralogical%20magazine&rft.au=Siachoque,%20Astrid&rft.date=2021-10-01&rft.volume=85&rft.issue=5&rft.spage=784&rft.epage=807&rft.pages=784-807&rft.issn=0026-461X&rft.eissn=1471-8022&rft_id=info:doi/10.1180/mgm.2021.65&rft_dat=%3Cproquest_cross%3E2594522556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2594522556&rft_id=info:pmid/&rfr_iscdi=true |