Network Intrusion Detection Model Based on Improved BYOL Self-Supervised Learning
The combination of deep learning and intrusion detection has become a hot topic in today’s network security. In the face of massive, high-dimensional network traffic with uneven sample distribution, how to be able to accurately detect anomalous traffic is the primary task of intrusion detection. Mos...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2021-10, Vol.2021, p.1-23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The combination of deep learning and intrusion detection has become a hot topic in today’s network security. In the face of massive, high-dimensional network traffic with uneven sample distribution, how to be able to accurately detect anomalous traffic is the primary task of intrusion detection. Most research on intrusion detection systems based on network anomalous traffic detection has focused on supervised learning; however, the process of obtaining labeled data often requires a lot of time and effort, as well as the support of network experts. Therefore, it is worthwhile investigating the development of label-free self-supervised learning-based approaches called BYOL which is a simple and elegant framework with sufficiently powerful feature extraction capabilities for intrusion detection systems. In this paper, we propose a new data augmentation strategy for intrusion detection data and an intrusion detection model based on label-free self-supervised learning, using a new data augmentation strategy to introduce a perturbation enhancement model to learn invariant feature representation capability and an improved BYOL self-supervised learning method to train the UNSW-NB15 intrusion detection dataset without labels to extract network traffic feature representations. Linear evaluation on UNSW-NB15 and transfer learning on NSK-KDD, KDD CUP99, CIC IDS2017, and CIDDS_001 achieve excellent performance in all metrics. |
---|---|
ISSN: | 1939-0114 1939-0122 |
DOI: | 10.1155/2021/9486949 |