Mars weather data analysis using machine learning techniques
Curiosity of the human mind and the possibility of settlement in other planets to decrease the likelihood of human extinction have acted as a catalyst in the colonization mission of the planet Mars. Exploration, colonization and human missions to the planet are being supported by many public space a...
Gespeichert in:
Veröffentlicht in: | Earth science informatics 2021-12, Vol.14 (4), p.1885-1898 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1898 |
---|---|
container_issue | 4 |
container_start_page | 1885 |
container_title | Earth science informatics |
container_volume | 14 |
creator | Priyadarshini, Ishaani Puri, Vikram |
description | Curiosity of the human mind and the possibility of settlement in other planets to decrease the likelihood of human extinction have acted as a catalyst in the colonization mission of the planet Mars. Exploration, colonization and human missions to the planet are being supported by many public space agencies. Although there are several factors like toxic soil, low gravity, radiation exposures etc. that rule out the possibility of colonization, the presence of polar ice caps gives abundant hope to scientists towards making Mars habitable. Colonizing the planet also considers factors like atmosphere, soil, water content etc., and there seems to be an ongoing debate on how to make the planet habitable for mankind. In order to strengthen or weaken the claim there is a necessity to explore many other factors that may contribute to Mars’ colonization in the future. Weather is one such factor worth exploring. In this paper we present some artificial intelligence techniques for analyzing Martian weather data. We rely on machine learning models like Convolution Neural Networks (CNN), Gated Recurrent Units (GRU), Long Short Term Memory (LSTM), stacked LSTM, and CNN-LSTM models to analyze the red planet’s weather data. The models have been validated using statistical parameters such as MAE, MSE, RMSE and R-squared coefficient. Our analysis reports that the LSTM model outperforms all the baseline models with the R-squared value as 0.8640, and the MAE value as 0.1257. |
doi_str_mv | 10.1007/s12145-021-00643-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593957014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593957014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2750cd12456d61e2a156a9b737f8b2af4c62dc947f53ab63298070da3d633faf3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsNT-A54CnqMz-5mAFyl-geJFz8tks9tG2rTupkj_e7dG9OZphuG9N48fY-cIlwhgrhJylKoEjiWAlqKEIzbBSueTrPD4dzfilM1S6hoQyLXgvJqw62eKqfj0NCx9LFoaqKCeVvvUpWKXun5RrMktu94XK0-xPxwG75Z997Hz6YydBFolP_uZU_Z2d_s6fyifXu4f5zdPpRNYDyU3ClyLXCrdavScUGmqGyNMqBpOQTrNW1dLE5SgJherKzDQkmi1EIGCmLKLMXcbN4e_g33f7GKumSxXtaiVAZRZxUeVi5uUog92G7s1xb1FsAdQdgRlMyj7DcpCNonRlLK4X_j4F_2P6wvmkmot</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593957014</pqid></control><display><type>article</type><title>Mars weather data analysis using machine learning techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Priyadarshini, Ishaani ; Puri, Vikram</creator><creatorcontrib>Priyadarshini, Ishaani ; Puri, Vikram</creatorcontrib><description>Curiosity of the human mind and the possibility of settlement in other planets to decrease the likelihood of human extinction have acted as a catalyst in the colonization mission of the planet Mars. Exploration, colonization and human missions to the planet are being supported by many public space agencies. Although there are several factors like toxic soil, low gravity, radiation exposures etc. that rule out the possibility of colonization, the presence of polar ice caps gives abundant hope to scientists towards making Mars habitable. Colonizing the planet also considers factors like atmosphere, soil, water content etc., and there seems to be an ongoing debate on how to make the planet habitable for mankind. In order to strengthen or weaken the claim there is a necessity to explore many other factors that may contribute to Mars’ colonization in the future. Weather is one such factor worth exploring. In this paper we present some artificial intelligence techniques for analyzing Martian weather data. We rely on machine learning models like Convolution Neural Networks (CNN), Gated Recurrent Units (GRU), Long Short Term Memory (LSTM), stacked LSTM, and CNN-LSTM models to analyze the red planet’s weather data. The models have been validated using statistical parameters such as MAE, MSE, RMSE and R-squared coefficient. Our analysis reports that the LSTM model outperforms all the baseline models with the R-squared value as 0.8640, and the MAE value as 0.1257.</description><identifier>ISSN: 1865-0473</identifier><identifier>EISSN: 1865-0481</identifier><identifier>DOI: 10.1007/s12145-021-00643-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial intelligence ; Artificial neural networks ; Atmospheric models ; Colonization ; Data analysis ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ice caps ; Information Systems Applications (incl.Internet) ; Machine learning ; Manned Mars missions ; Mars ; Mars weather ; Meteorological data ; Moisture content ; Neural networks ; Ontology ; Planets ; Polar caps ; Public spaces ; Radiation ; Radiation effects ; Research Article ; Simulation and Modeling ; Soil water ; Soils ; Space Exploration and Astronautics ; Space missions ; Space Sciences (including Extraterrestrial Physics ; Water content</subject><ispartof>Earth science informatics, 2021-12, Vol.14 (4), p.1885-1898</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2750cd12456d61e2a156a9b737f8b2af4c62dc947f53ab63298070da3d633faf3</citedby><cites>FETCH-LOGICAL-c319t-2750cd12456d61e2a156a9b737f8b2af4c62dc947f53ab63298070da3d633faf3</cites><orcidid>0000-0002-8826-8065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12145-021-00643-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12145-021-00643-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Priyadarshini, Ishaani</creatorcontrib><creatorcontrib>Puri, Vikram</creatorcontrib><title>Mars weather data analysis using machine learning techniques</title><title>Earth science informatics</title><addtitle>Earth Sci Inform</addtitle><description>Curiosity of the human mind and the possibility of settlement in other planets to decrease the likelihood of human extinction have acted as a catalyst in the colonization mission of the planet Mars. Exploration, colonization and human missions to the planet are being supported by many public space agencies. Although there are several factors like toxic soil, low gravity, radiation exposures etc. that rule out the possibility of colonization, the presence of polar ice caps gives abundant hope to scientists towards making Mars habitable. Colonizing the planet also considers factors like atmosphere, soil, water content etc., and there seems to be an ongoing debate on how to make the planet habitable for mankind. In order to strengthen or weaken the claim there is a necessity to explore many other factors that may contribute to Mars’ colonization in the future. Weather is one such factor worth exploring. In this paper we present some artificial intelligence techniques for analyzing Martian weather data. We rely on machine learning models like Convolution Neural Networks (CNN), Gated Recurrent Units (GRU), Long Short Term Memory (LSTM), stacked LSTM, and CNN-LSTM models to analyze the red planet’s weather data. The models have been validated using statistical parameters such as MAE, MSE, RMSE and R-squared coefficient. Our analysis reports that the LSTM model outperforms all the baseline models with the R-squared value as 0.8640, and the MAE value as 0.1257.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Atmospheric models</subject><subject>Colonization</subject><subject>Data analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ice caps</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Machine learning</subject><subject>Manned Mars missions</subject><subject>Mars</subject><subject>Mars weather</subject><subject>Meteorological data</subject><subject>Moisture content</subject><subject>Neural networks</subject><subject>Ontology</subject><subject>Planets</subject><subject>Polar caps</subject><subject>Public spaces</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Research Article</subject><subject>Simulation and Modeling</subject><subject>Soil water</subject><subject>Soils</subject><subject>Space Exploration and Astronautics</subject><subject>Space missions</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Water content</subject><issn>1865-0473</issn><issn>1865-0481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1Lw0AQxRdRsNT-A54CnqMz-5mAFyl-geJFz8tks9tG2rTupkj_e7dG9OZphuG9N48fY-cIlwhgrhJylKoEjiWAlqKEIzbBSueTrPD4dzfilM1S6hoQyLXgvJqw62eKqfj0NCx9LFoaqKCeVvvUpWKXun5RrMktu94XK0-xPxwG75Z997Hz6YydBFolP_uZU_Z2d_s6fyifXu4f5zdPpRNYDyU3ClyLXCrdavScUGmqGyNMqBpOQTrNW1dLE5SgJherKzDQkmi1EIGCmLKLMXcbN4e_g33f7GKumSxXtaiVAZRZxUeVi5uUog92G7s1xb1FsAdQdgRlMyj7DcpCNonRlLK4X_j4F_2P6wvmkmot</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Priyadarshini, Ishaani</creator><creator>Puri, Vikram</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8826-8065</orcidid></search><sort><creationdate>20211201</creationdate><title>Mars weather data analysis using machine learning techniques</title><author>Priyadarshini, Ishaani ; Puri, Vikram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2750cd12456d61e2a156a9b737f8b2af4c62dc947f53ab63298070da3d633faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Atmospheric models</topic><topic>Colonization</topic><topic>Data analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ice caps</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Machine learning</topic><topic>Manned Mars missions</topic><topic>Mars</topic><topic>Mars weather</topic><topic>Meteorological data</topic><topic>Moisture content</topic><topic>Neural networks</topic><topic>Ontology</topic><topic>Planets</topic><topic>Polar caps</topic><topic>Public spaces</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Research Article</topic><topic>Simulation and Modeling</topic><topic>Soil water</topic><topic>Soils</topic><topic>Space Exploration and Astronautics</topic><topic>Space missions</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Water content</topic><toplevel>online_resources</toplevel><creatorcontrib>Priyadarshini, Ishaani</creatorcontrib><creatorcontrib>Puri, Vikram</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Earth science informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Priyadarshini, Ishaani</au><au>Puri, Vikram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mars weather data analysis using machine learning techniques</atitle><jtitle>Earth science informatics</jtitle><stitle>Earth Sci Inform</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>14</volume><issue>4</issue><spage>1885</spage><epage>1898</epage><pages>1885-1898</pages><issn>1865-0473</issn><eissn>1865-0481</eissn><abstract>Curiosity of the human mind and the possibility of settlement in other planets to decrease the likelihood of human extinction have acted as a catalyst in the colonization mission of the planet Mars. Exploration, colonization and human missions to the planet are being supported by many public space agencies. Although there are several factors like toxic soil, low gravity, radiation exposures etc. that rule out the possibility of colonization, the presence of polar ice caps gives abundant hope to scientists towards making Mars habitable. Colonizing the planet also considers factors like atmosphere, soil, water content etc., and there seems to be an ongoing debate on how to make the planet habitable for mankind. In order to strengthen or weaken the claim there is a necessity to explore many other factors that may contribute to Mars’ colonization in the future. Weather is one such factor worth exploring. In this paper we present some artificial intelligence techniques for analyzing Martian weather data. We rely on machine learning models like Convolution Neural Networks (CNN), Gated Recurrent Units (GRU), Long Short Term Memory (LSTM), stacked LSTM, and CNN-LSTM models to analyze the red planet’s weather data. The models have been validated using statistical parameters such as MAE, MSE, RMSE and R-squared coefficient. Our analysis reports that the LSTM model outperforms all the baseline models with the R-squared value as 0.8640, and the MAE value as 0.1257.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12145-021-00643-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8826-8065</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-0473 |
ispartof | Earth science informatics, 2021-12, Vol.14 (4), p.1885-1898 |
issn | 1865-0473 1865-0481 |
language | eng |
recordid | cdi_proquest_journals_2593957014 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial intelligence Artificial neural networks Atmospheric models Colonization Data analysis Earth and Environmental Science Earth Sciences Earth System Sciences Ice caps Information Systems Applications (incl.Internet) Machine learning Manned Mars missions Mars Mars weather Meteorological data Moisture content Neural networks Ontology Planets Polar caps Public spaces Radiation Radiation effects Research Article Simulation and Modeling Soil water Soils Space Exploration and Astronautics Space missions Space Sciences (including Extraterrestrial Physics Water content |
title | Mars weather data analysis using machine learning techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A48%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mars%20weather%20data%20analysis%20using%20machine%20learning%20techniques&rft.jtitle=Earth%20science%20informatics&rft.au=Priyadarshini,%20Ishaani&rft.date=2021-12-01&rft.volume=14&rft.issue=4&rft.spage=1885&rft.epage=1898&rft.pages=1885-1898&rft.issn=1865-0473&rft.eissn=1865-0481&rft_id=info:doi/10.1007/s12145-021-00643-0&rft_dat=%3Cproquest_cross%3E2593957014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593957014&rft_id=info:pmid/&rfr_iscdi=true |