Crack Initiation and Damage Evolution of Micritized Framework Reef Limestone in the South China Sea
Triaxial compression tests are conducted for the micritized framework reef limestone, which is sampled from a reef island in the South China Sea. The lateral strain response method (LSR) is applied to figure out the crack initiation stress of the reef limestone sample under different confining press...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2021-11, Vol.54 (11), p.5591-5601 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5601 |
---|---|
container_issue | 11 |
container_start_page | 5591 |
container_title | Rock mechanics and rock engineering |
container_volume | 54 |
creator | Liu, Haifeng Zhu, Changqi Zheng, Kun Ma, Chenghao Yi, Mingxing |
description | Triaxial compression tests are conducted for the micritized framework reef limestone, which is sampled from a reef island in the South China Sea. The lateral strain response method (LSR) is applied to figure out the crack initiation stress of the reef limestone sample under different confining pressures. With a low porosity and a high dry density, the micritized framework reef limestone has higher compressive strength compared to the rudstone and bioclastic limestone from shallow reef associated strata. Under a confining pressure of 0–8 MPa, the crack initiation stress of the specimen is estimated to be 52%–69% of the peak compressive strength. The crack initiation stress increases when the confining pressure increases. Under different confining pressures, the lateral strain of the specimen when it fails is smaller than terrigenous rocks all the time. Further analysis shows that the lateral strains of the specimen when crack initiation occurs under different confining pressures are similar (with a value of |
doi_str_mv | 10.1007/s00603-021-02570-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593954914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593954914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-db51f336e2602ca7a584e9b41b7b8d807cbde299c19aced141419c8a521f78453</originalsourceid><addsrcrecordid>eNp9UNtKAzEQDaJgrf6ATwGfV3PbSx6lVi1UBC_gW8hms23ablKTXUW_pt_SLzPtCr7JMAwzc85cDgDnGF1ihPKrgFCGaIIIjp7mKGEHYIAZZQlL6dshGKCc0IRklByDkxAWCMVmXgxAPfJSLeHEmtbI1jgLpa3gjWzkTMPxh1t1-6Kr4YNRPoK-dQVvvWz0p_NL-KR1Daem0aF1VkNjYTvX282z69r5djOaGytjpuUpOKrlKuiz3zgEr7fjl9F9Mn28m4yup4mimLdJVaa4pjTTJENEyVymBdO8ZLjMy6IqUK7KShPOFeZS6QqzaFwVMiW4zov46hBc9HPX3r138SqxcJ23caUgKac8ZTw-PgSkRynvQvC6FmtvGum_BEZip6fo9RRRT7HXU-xItCeFCLYz7f9G_8P6AaMieqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593954914</pqid></control><display><type>article</type><title>Crack Initiation and Damage Evolution of Micritized Framework Reef Limestone in the South China Sea</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Haifeng ; Zhu, Changqi ; Zheng, Kun ; Ma, Chenghao ; Yi, Mingxing</creator><creatorcontrib>Liu, Haifeng ; Zhu, Changqi ; Zheng, Kun ; Ma, Chenghao ; Yi, Mingxing</creatorcontrib><description>Triaxial compression tests are conducted for the micritized framework reef limestone, which is sampled from a reef island in the South China Sea. The lateral strain response method (LSR) is applied to figure out the crack initiation stress of the reef limestone sample under different confining pressures. With a low porosity and a high dry density, the micritized framework reef limestone has higher compressive strength compared to the rudstone and bioclastic limestone from shallow reef associated strata. Under a confining pressure of 0–8 MPa, the crack initiation stress of the specimen is estimated to be 52%–69% of the peak compressive strength. The crack initiation stress increases when the confining pressure increases. Under different confining pressures, the lateral strain of the specimen when it fails is smaller than terrigenous rocks all the time. Further analysis shows that the lateral strains of the specimen when crack initiation occurs under different confining pressures are similar (with a value of < 0.0004). Between the point of crack initiation and the point of rock dilation, the lateral strain increases in a logarithmic manner under all the confining pressures. After reaching the point of rock dilation, the lateral damage variable is estimated to be 0.56–0.74, larger than the axial damage variable. Based on the analysis of the lateral strain, an empirical relationship between the lateral damage variable and the lateral strain is proposed to portray the damage evolution of the reef limestone specimen.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02570-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Civil Engineering ; Compression ; Compressive strength ; Confining ; Crack initiation ; Damage ; Dilation ; Dry density ; Earth and Environmental Science ; Earth Sciences ; Empirical analysis ; Evolution ; Frameworks ; Geophysics/Geodesy ; Limestone ; Original Paper ; Porosity ; Reefs ; Rocks ; Strain ; Triaxial compression tests</subject><ispartof>Rock mechanics and rock engineering, 2021-11, Vol.54 (11), p.5591-5601</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-db51f336e2602ca7a584e9b41b7b8d807cbde299c19aced141419c8a521f78453</citedby><cites>FETCH-LOGICAL-c319t-db51f336e2602ca7a584e9b41b7b8d807cbde299c19aced141419c8a521f78453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02570-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02570-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Liu, Haifeng</creatorcontrib><creatorcontrib>Zhu, Changqi</creatorcontrib><creatorcontrib>Zheng, Kun</creatorcontrib><creatorcontrib>Ma, Chenghao</creatorcontrib><creatorcontrib>Yi, Mingxing</creatorcontrib><title>Crack Initiation and Damage Evolution of Micritized Framework Reef Limestone in the South China Sea</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Triaxial compression tests are conducted for the micritized framework reef limestone, which is sampled from a reef island in the South China Sea. The lateral strain response method (LSR) is applied to figure out the crack initiation stress of the reef limestone sample under different confining pressures. With a low porosity and a high dry density, the micritized framework reef limestone has higher compressive strength compared to the rudstone and bioclastic limestone from shallow reef associated strata. Under a confining pressure of 0–8 MPa, the crack initiation stress of the specimen is estimated to be 52%–69% of the peak compressive strength. The crack initiation stress increases when the confining pressure increases. Under different confining pressures, the lateral strain of the specimen when it fails is smaller than terrigenous rocks all the time. Further analysis shows that the lateral strains of the specimen when crack initiation occurs under different confining pressures are similar (with a value of < 0.0004). Between the point of crack initiation and the point of rock dilation, the lateral strain increases in a logarithmic manner under all the confining pressures. After reaching the point of rock dilation, the lateral damage variable is estimated to be 0.56–0.74, larger than the axial damage variable. Based on the analysis of the lateral strain, an empirical relationship between the lateral damage variable and the lateral strain is proposed to portray the damage evolution of the reef limestone specimen.</description><subject>Civil Engineering</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Confining</subject><subject>Crack initiation</subject><subject>Damage</subject><subject>Dilation</subject><subject>Dry density</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical analysis</subject><subject>Evolution</subject><subject>Frameworks</subject><subject>Geophysics/Geodesy</subject><subject>Limestone</subject><subject>Original Paper</subject><subject>Porosity</subject><subject>Reefs</subject><subject>Rocks</subject><subject>Strain</subject><subject>Triaxial compression tests</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UNtKAzEQDaJgrf6ATwGfV3PbSx6lVi1UBC_gW8hms23ablKTXUW_pt_SLzPtCr7JMAwzc85cDgDnGF1ihPKrgFCGaIIIjp7mKGEHYIAZZQlL6dshGKCc0IRklByDkxAWCMVmXgxAPfJSLeHEmtbI1jgLpa3gjWzkTMPxh1t1-6Kr4YNRPoK-dQVvvWz0p_NL-KR1Daem0aF1VkNjYTvX282z69r5djOaGytjpuUpOKrlKuiz3zgEr7fjl9F9Mn28m4yup4mimLdJVaa4pjTTJENEyVymBdO8ZLjMy6IqUK7KShPOFeZS6QqzaFwVMiW4zov46hBc9HPX3r138SqxcJ23caUgKac8ZTw-PgSkRynvQvC6FmtvGum_BEZip6fo9RRRT7HXU-xItCeFCLYz7f9G_8P6AaMieqo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Haifeng</creator><creator>Zhu, Changqi</creator><creator>Zheng, Kun</creator><creator>Ma, Chenghao</creator><creator>Yi, Mingxing</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211101</creationdate><title>Crack Initiation and Damage Evolution of Micritized Framework Reef Limestone in the South China Sea</title><author>Liu, Haifeng ; Zhu, Changqi ; Zheng, Kun ; Ma, Chenghao ; Yi, Mingxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-db51f336e2602ca7a584e9b41b7b8d807cbde299c19aced141419c8a521f78453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Civil Engineering</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Confining</topic><topic>Crack initiation</topic><topic>Damage</topic><topic>Dilation</topic><topic>Dry density</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical analysis</topic><topic>Evolution</topic><topic>Frameworks</topic><topic>Geophysics/Geodesy</topic><topic>Limestone</topic><topic>Original Paper</topic><topic>Porosity</topic><topic>Reefs</topic><topic>Rocks</topic><topic>Strain</topic><topic>Triaxial compression tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haifeng</creatorcontrib><creatorcontrib>Zhu, Changqi</creatorcontrib><creatorcontrib>Zheng, Kun</creatorcontrib><creatorcontrib>Ma, Chenghao</creatorcontrib><creatorcontrib>Yi, Mingxing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haifeng</au><au>Zhu, Changqi</au><au>Zheng, Kun</au><au>Ma, Chenghao</au><au>Yi, Mingxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack Initiation and Damage Evolution of Micritized Framework Reef Limestone in the South China Sea</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>54</volume><issue>11</issue><spage>5591</spage><epage>5601</epage><pages>5591-5601</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Triaxial compression tests are conducted for the micritized framework reef limestone, which is sampled from a reef island in the South China Sea. The lateral strain response method (LSR) is applied to figure out the crack initiation stress of the reef limestone sample under different confining pressures. With a low porosity and a high dry density, the micritized framework reef limestone has higher compressive strength compared to the rudstone and bioclastic limestone from shallow reef associated strata. Under a confining pressure of 0–8 MPa, the crack initiation stress of the specimen is estimated to be 52%–69% of the peak compressive strength. The crack initiation stress increases when the confining pressure increases. Under different confining pressures, the lateral strain of the specimen when it fails is smaller than terrigenous rocks all the time. Further analysis shows that the lateral strains of the specimen when crack initiation occurs under different confining pressures are similar (with a value of < 0.0004). Between the point of crack initiation and the point of rock dilation, the lateral strain increases in a logarithmic manner under all the confining pressures. After reaching the point of rock dilation, the lateral damage variable is estimated to be 0.56–0.74, larger than the axial damage variable. Based on the analysis of the lateral strain, an empirical relationship between the lateral damage variable and the lateral strain is proposed to portray the damage evolution of the reef limestone specimen.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02570-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2021-11, Vol.54 (11), p.5591-5601 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_journals_2593954914 |
source | Springer Nature - Complete Springer Journals |
subjects | Civil Engineering Compression Compressive strength Confining Crack initiation Damage Dilation Dry density Earth and Environmental Science Earth Sciences Empirical analysis Evolution Frameworks Geophysics/Geodesy Limestone Original Paper Porosity Reefs Rocks Strain Triaxial compression tests |
title | Crack Initiation and Damage Evolution of Micritized Framework Reef Limestone in the South China Sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20Initiation%20and%20Damage%20Evolution%20of%20Micritized%20Framework%20Reef%20Limestone%20in%20the%C2%A0South%C2%A0China%C2%A0Sea&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Liu,%20Haifeng&rft.date=2021-11-01&rft.volume=54&rft.issue=11&rft.spage=5591&rft.epage=5601&rft.pages=5591-5601&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02570-4&rft_dat=%3Cproquest_cross%3E2593954914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593954914&rft_id=info:pmid/&rfr_iscdi=true |