Natural Rock Fractures: From Aperture to Fluid Flow
Fractures provide preferential flow paths and establish the internal “plumbing” of the rock mass. Fracture surface roughness and the matedness between surfaces combine to delineate the fracture geometric aperture. New and published measurements show the inherent relation between roughness wavelength...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2021-11, Vol.54 (11), p.5827-5844 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5844 |
---|---|
container_issue | 11 |
container_start_page | 5827 |
container_title | Rock mechanics and rock engineering |
container_volume | 54 |
creator | Cardona, Alejandro Finkbeiner, Thomas Santamarina, J. Carlos |
description | Fractures provide preferential flow paths and establish the internal “plumbing” of the rock mass. Fracture surface roughness and the matedness between surfaces combine to delineate the fracture geometric aperture. New and published measurements show the inherent relation between roughness wavelength and amplitude. In fact, data cluster along a power trend consistent with fractal topography. Synthetic fractal surfaces created using this power law, kinematic constraints and contact mechanics are used to explore the evolution of aperture size distribution during normal loading and shear displacement. Results show that increments in normal stress shift the Gaussian aperture size distribution toward smaller apertures. On the other hand, shear displacements do not affect the aperture size distribution of unmated fractures; however, the aperture mean and standard deviation increase with shear displacement in initially mated fractures. We demonstrate that the cubic law is locally valid when fracture roughness follows the observed power law and allows for efficient numerical analyses of transmissivity. Simulations show that flow trajectories redistribute and flow channeling becomes more pronounced with increasing normal stress. Shear displacement induces early aperture anisotropy in initially mated fractures as contact points detach transversely to the shear direction; however, anisotropy decreases as fractures become unmated after large shear displacements. Radial transmissivity measurements obtained using a torsional ring shear device and data gathered from the literature support the development of robust phenomenological models that satisfy asymptotic trends. A power function accurately captures the evolution of transmissivity with normal stress, while a logistic function represents changes with shear displacement. A complementary hydro-chemo-mechanical study shows that positive feedback during reactive fluid flow heightens channeling. |
doi_str_mv | 10.1007/s00603-021-02565-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593954530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593954530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b17aa55c427de8fd70d77e8223f162f95eb1e560fe5c76b03755e397348698c93</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaJgXf0Dngqeo5NMk7TelsVVYVEQBW8hTVPZtbupSYv4781awZuH-WLee8M8Qs4ZXDIAdRUBJCAFzlIIKSg7IBkrsKCFwNdDkoHiSLlEfkxOYtwApKUqM4IPZhiD6fInb9_zZTA2jS5ep9Zv83nvwn7OB58vu3HdpOw_T8lRa7rozn7rjLwsb54Xd3T1eHu_mK-oRYkDrZkyRghbcNW4sm0UNEq5knNsmeRtJVzNnJDQOmGVrAGVEA4rhUUpq9JWOCMXk24f_Mfo4qA3fgy7dFJzUWEl0m-QUHxC2eBjDK7VfVhvTfjSDPTeHD2Zo5M5-scczRIJJ1JM4N2bC3_S_7C-AVTCZNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593954530</pqid></control><display><type>article</type><title>Natural Rock Fractures: From Aperture to Fluid Flow</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cardona, Alejandro ; Finkbeiner, Thomas ; Santamarina, J. Carlos</creator><creatorcontrib>Cardona, Alejandro ; Finkbeiner, Thomas ; Santamarina, J. Carlos</creatorcontrib><description>Fractures provide preferential flow paths and establish the internal “plumbing” of the rock mass. Fracture surface roughness and the matedness between surfaces combine to delineate the fracture geometric aperture. New and published measurements show the inherent relation between roughness wavelength and amplitude. In fact, data cluster along a power trend consistent with fractal topography. Synthetic fractal surfaces created using this power law, kinematic constraints and contact mechanics are used to explore the evolution of aperture size distribution during normal loading and shear displacement. Results show that increments in normal stress shift the Gaussian aperture size distribution toward smaller apertures. On the other hand, shear displacements do not affect the aperture size distribution of unmated fractures; however, the aperture mean and standard deviation increase with shear displacement in initially mated fractures. We demonstrate that the cubic law is locally valid when fracture roughness follows the observed power law and allows for efficient numerical analyses of transmissivity. Simulations show that flow trajectories redistribute and flow channeling becomes more pronounced with increasing normal stress. Shear displacement induces early aperture anisotropy in initially mated fractures as contact points detach transversely to the shear direction; however, anisotropy decreases as fractures become unmated after large shear displacements. Radial transmissivity measurements obtained using a torsional ring shear device and data gathered from the literature support the development of robust phenomenological models that satisfy asymptotic trends. A power function accurately captures the evolution of transmissivity with normal stress, while a logistic function represents changes with shear displacement. A complementary hydro-chemo-mechanical study shows that positive feedback during reactive fluid flow heightens channeling.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02565-1</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Anisotropy ; Apertures ; Channeling ; Civil Engineering ; Displacement ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Flow paths ; Fluid dynamics ; Fluid flow ; Fractals ; Fracture surfaces ; Geophysics/Geodesy ; Mechanics ; Normal distribution ; Original Paper ; Positive feedback ; Power law ; Preferential flow ; Robustness (mathematics) ; Rock masses ; Rocks ; Shear ; Size distribution ; Surface roughness ; Transmissivity ; Wavelength</subject><ispartof>Rock mechanics and rock engineering, 2021-11, Vol.54 (11), p.5827-5844</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b17aa55c427de8fd70d77e8223f162f95eb1e560fe5c76b03755e397348698c93</citedby><cites>FETCH-LOGICAL-c363t-b17aa55c427de8fd70d77e8223f162f95eb1e560fe5c76b03755e397348698c93</cites><orcidid>0000-0002-6137-6162 ; 0000-0001-8708-2827 ; 0000-0001-7964-384X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02565-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02565-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cardona, Alejandro</creatorcontrib><creatorcontrib>Finkbeiner, Thomas</creatorcontrib><creatorcontrib>Santamarina, J. Carlos</creatorcontrib><title>Natural Rock Fractures: From Aperture to Fluid Flow</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Fractures provide preferential flow paths and establish the internal “plumbing” of the rock mass. Fracture surface roughness and the matedness between surfaces combine to delineate the fracture geometric aperture. New and published measurements show the inherent relation between roughness wavelength and amplitude. In fact, data cluster along a power trend consistent with fractal topography. Synthetic fractal surfaces created using this power law, kinematic constraints and contact mechanics are used to explore the evolution of aperture size distribution during normal loading and shear displacement. Results show that increments in normal stress shift the Gaussian aperture size distribution toward smaller apertures. On the other hand, shear displacements do not affect the aperture size distribution of unmated fractures; however, the aperture mean and standard deviation increase with shear displacement in initially mated fractures. We demonstrate that the cubic law is locally valid when fracture roughness follows the observed power law and allows for efficient numerical analyses of transmissivity. Simulations show that flow trajectories redistribute and flow channeling becomes more pronounced with increasing normal stress. Shear displacement induces early aperture anisotropy in initially mated fractures as contact points detach transversely to the shear direction; however, anisotropy decreases as fractures become unmated after large shear displacements. Radial transmissivity measurements obtained using a torsional ring shear device and data gathered from the literature support the development of robust phenomenological models that satisfy asymptotic trends. A power function accurately captures the evolution of transmissivity with normal stress, while a logistic function represents changes with shear displacement. A complementary hydro-chemo-mechanical study shows that positive feedback during reactive fluid flow heightens channeling.</description><subject>Anisotropy</subject><subject>Apertures</subject><subject>Channeling</subject><subject>Civil Engineering</subject><subject>Displacement</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Flow paths</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fractals</subject><subject>Fracture surfaces</subject><subject>Geophysics/Geodesy</subject><subject>Mechanics</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Positive feedback</subject><subject>Power law</subject><subject>Preferential flow</subject><subject>Robustness (mathematics)</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Shear</subject><subject>Size distribution</subject><subject>Surface roughness</subject><subject>Transmissivity</subject><subject>Wavelength</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LxDAQDaJgXf0Dngqeo5NMk7TelsVVYVEQBW8hTVPZtbupSYv4781awZuH-WLee8M8Qs4ZXDIAdRUBJCAFzlIIKSg7IBkrsKCFwNdDkoHiSLlEfkxOYtwApKUqM4IPZhiD6fInb9_zZTA2jS5ep9Zv83nvwn7OB58vu3HdpOw_T8lRa7rozn7rjLwsb54Xd3T1eHu_mK-oRYkDrZkyRghbcNW4sm0UNEq5knNsmeRtJVzNnJDQOmGVrAGVEA4rhUUpq9JWOCMXk24f_Mfo4qA3fgy7dFJzUWEl0m-QUHxC2eBjDK7VfVhvTfjSDPTeHD2Zo5M5-scczRIJJ1JM4N2bC3_S_7C-AVTCZNY</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Cardona, Alejandro</creator><creator>Finkbeiner, Thomas</creator><creator>Santamarina, J. Carlos</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6137-6162</orcidid><orcidid>https://orcid.org/0000-0001-8708-2827</orcidid><orcidid>https://orcid.org/0000-0001-7964-384X</orcidid></search><sort><creationdate>20211101</creationdate><title>Natural Rock Fractures: From Aperture to Fluid Flow</title><author>Cardona, Alejandro ; Finkbeiner, Thomas ; Santamarina, J. Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b17aa55c427de8fd70d77e8223f162f95eb1e560fe5c76b03755e397348698c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Apertures</topic><topic>Channeling</topic><topic>Civil Engineering</topic><topic>Displacement</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Flow paths</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fractals</topic><topic>Fracture surfaces</topic><topic>Geophysics/Geodesy</topic><topic>Mechanics</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Positive feedback</topic><topic>Power law</topic><topic>Preferential flow</topic><topic>Robustness (mathematics)</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Shear</topic><topic>Size distribution</topic><topic>Surface roughness</topic><topic>Transmissivity</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardona, Alejandro</creatorcontrib><creatorcontrib>Finkbeiner, Thomas</creatorcontrib><creatorcontrib>Santamarina, J. Carlos</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardona, Alejandro</au><au>Finkbeiner, Thomas</au><au>Santamarina, J. Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural Rock Fractures: From Aperture to Fluid Flow</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>54</volume><issue>11</issue><spage>5827</spage><epage>5844</epage><pages>5827-5844</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Fractures provide preferential flow paths and establish the internal “plumbing” of the rock mass. Fracture surface roughness and the matedness between surfaces combine to delineate the fracture geometric aperture. New and published measurements show the inherent relation between roughness wavelength and amplitude. In fact, data cluster along a power trend consistent with fractal topography. Synthetic fractal surfaces created using this power law, kinematic constraints and contact mechanics are used to explore the evolution of aperture size distribution during normal loading and shear displacement. Results show that increments in normal stress shift the Gaussian aperture size distribution toward smaller apertures. On the other hand, shear displacements do not affect the aperture size distribution of unmated fractures; however, the aperture mean and standard deviation increase with shear displacement in initially mated fractures. We demonstrate that the cubic law is locally valid when fracture roughness follows the observed power law and allows for efficient numerical analyses of transmissivity. Simulations show that flow trajectories redistribute and flow channeling becomes more pronounced with increasing normal stress. Shear displacement induces early aperture anisotropy in initially mated fractures as contact points detach transversely to the shear direction; however, anisotropy decreases as fractures become unmated after large shear displacements. Radial transmissivity measurements obtained using a torsional ring shear device and data gathered from the literature support the development of robust phenomenological models that satisfy asymptotic trends. A power function accurately captures the evolution of transmissivity with normal stress, while a logistic function represents changes with shear displacement. A complementary hydro-chemo-mechanical study shows that positive feedback during reactive fluid flow heightens channeling.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02565-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6137-6162</orcidid><orcidid>https://orcid.org/0000-0001-8708-2827</orcidid><orcidid>https://orcid.org/0000-0001-7964-384X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2021-11, Vol.54 (11), p.5827-5844 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_journals_2593954530 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Apertures Channeling Civil Engineering Displacement Earth and Environmental Science Earth Sciences Evolution Flow paths Fluid dynamics Fluid flow Fractals Fracture surfaces Geophysics/Geodesy Mechanics Normal distribution Original Paper Positive feedback Power law Preferential flow Robustness (mathematics) Rock masses Rocks Shear Size distribution Surface roughness Transmissivity Wavelength |
title | Natural Rock Fractures: From Aperture to Fluid Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20Rock%20Fractures:%20From%20Aperture%20to%20Fluid%20Flow&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Cardona,%20Alejandro&rft.date=2021-11-01&rft.volume=54&rft.issue=11&rft.spage=5827&rft.epage=5844&rft.pages=5827-5844&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02565-1&rft_dat=%3Cproquest_cross%3E2593954530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593954530&rft_id=info:pmid/&rfr_iscdi=true |