VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation

Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing 2021-12, Vol.103 (12), p.2867-2892
Hauptverfasser: Dewangan, Deepak Kumar, Sahu, Satya Prakash, Sairam, Bandi, Agrawal, Aditi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2892
container_issue 12
container_start_page 2867
container_title Computing
container_volume 103
creator Dewangan, Deepak Kumar
Sahu, Satya Prakash
Sairam, Bandi
Agrawal, Aditi
description Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based approaches such as Radar and LiDAR and have high operational costs. To achieve a steady and optimal lane detection, the vision-based lane region detection scheme VLDNet is proposed which utilizes a encoder-decoder network using semantic segmentation architecture. In this direction, a hybrid model using UNet and ResNet has been adopted, where UNet is used as a segmentation model and ResNet-50 is used for down-sampling the image and identifying the required features. These identified features have been then applied into UNet for up-sampling and decoding the segments of the images. The publicly available KITTI dataset have been accessed for experiments and validation of the proposed network. The method outperforms the existing state-of-the-art methods in lane region detection. The network achieves better performance using standard evaluation measures such as accuracy of 98.87%, the precision of 98.24%, recall of 96.55%, frequency weighted IoU of 97.78%, and MaxF score of 97.77%.
doi_str_mv 10.1007/s00607-021-00974-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593746516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593746516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fbe4df40b6755d6abffea9d4db5622a2f5a9fe2309e4f641e3caf50f207c43d33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJV2u9yfoJi15UvIW0ndRqm65JVvHf27WCN08zDM_7DjyEHHI45gD5SQTIIGcgOAMocsXEFplxJTOmQefbZAbAgalT_bxL9mJ8BQAhT4sZ6Z-WF3eYzuhTG9vBs9JGrGlnPdKAzXihNSas0mbzmD6H8EbdEGjrE3Zd26BP9ANf2qpDGr9iwp6uY-sbGrG3PrXVuDT9SNlNxT7ZcbaLePA75-Tx6vJhccOW99e3i_MlqyQvEnMlqtopKLNc6zqzpXNoi1rVpc6EsMJpWzgUEgpULlMcZWWdBicgr5SspZyTo6l3FYb3NcZkXod18ONLI3Qhc5Vpno2UmKgqDDEGdGYV2t6GL8PBbLSaSasZtZofrUaMITmF4gj7BsNf9T-pb3srfX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593746516</pqid></control><display><type>article</type><title>VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>Dewangan, Deepak Kumar ; Sahu, Satya Prakash ; Sairam, Bandi ; Agrawal, Aditi</creator><creatorcontrib>Dewangan, Deepak Kumar ; Sahu, Satya Prakash ; Sairam, Bandi ; Agrawal, Aditi</creatorcontrib><description>Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based approaches such as Radar and LiDAR and have high operational costs. To achieve a steady and optimal lane detection, the vision-based lane region detection scheme VLDNet is proposed which utilizes a encoder-decoder network using semantic segmentation architecture. In this direction, a hybrid model using UNet and ResNet has been adopted, where UNet is used as a segmentation model and ResNet-50 is used for down-sampling the image and identifying the required features. These identified features have been then applied into UNet for up-sampling and decoding the segments of the images. The publicly available KITTI dataset have been accessed for experiments and validation of the proposed network. The method outperforms the existing state-of-the-art methods in lane region detection. The network achieves better performance using standard evaluation measures such as accuracy of 98.87%, the precision of 98.24%, recall of 96.55%, frequency weighted IoU of 97.78%, and MaxF score of 97.77%.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-021-00974-2</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Artificial Intelligence ; Coders ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Decoding ; Encoders-Decoders ; Image segmentation ; Information Systems Applications (incl.Internet) ; Intelligent vehicles ; Performance evaluation ; Regular Paper ; Sampling ; Semantic segmentation ; Semantics ; Software Engineering ; Vision</subject><ispartof>Computing, 2021-12, Vol.103 (12), p.2867-2892</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fbe4df40b6755d6abffea9d4db5622a2f5a9fe2309e4f641e3caf50f207c43d33</citedby><cites>FETCH-LOGICAL-c319t-fbe4df40b6755d6abffea9d4db5622a2f5a9fe2309e4f641e3caf50f207c43d33</cites><orcidid>0000-0002-0160-4215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-021-00974-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-021-00974-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dewangan, Deepak Kumar</creatorcontrib><creatorcontrib>Sahu, Satya Prakash</creatorcontrib><creatorcontrib>Sairam, Bandi</creatorcontrib><creatorcontrib>Agrawal, Aditi</creatorcontrib><title>VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation</title><title>Computing</title><addtitle>Computing</addtitle><description>Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based approaches such as Radar and LiDAR and have high operational costs. To achieve a steady and optimal lane detection, the vision-based lane region detection scheme VLDNet is proposed which utilizes a encoder-decoder network using semantic segmentation architecture. In this direction, a hybrid model using UNet and ResNet has been adopted, where UNet is used as a segmentation model and ResNet-50 is used for down-sampling the image and identifying the required features. These identified features have been then applied into UNet for up-sampling and decoding the segments of the images. The publicly available KITTI dataset have been accessed for experiments and validation of the proposed network. The method outperforms the existing state-of-the-art methods in lane region detection. The network achieves better performance using standard evaluation measures such as accuracy of 98.87%, the precision of 98.24%, recall of 96.55%, frequency weighted IoU of 97.78%, and MaxF score of 97.77%.</description><subject>Artificial Intelligence</subject><subject>Coders</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Decoding</subject><subject>Encoders-Decoders</subject><subject>Image segmentation</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Intelligent vehicles</subject><subject>Performance evaluation</subject><subject>Regular Paper</subject><subject>Sampling</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Software Engineering</subject><subject>Vision</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJV2u9yfoJi15UvIW0ndRqm65JVvHf27WCN08zDM_7DjyEHHI45gD5SQTIIGcgOAMocsXEFplxJTOmQefbZAbAgalT_bxL9mJ8BQAhT4sZ6Z-WF3eYzuhTG9vBs9JGrGlnPdKAzXihNSas0mbzmD6H8EbdEGjrE3Zd26BP9ANf2qpDGr9iwp6uY-sbGrG3PrXVuDT9SNlNxT7ZcbaLePA75-Tx6vJhccOW99e3i_MlqyQvEnMlqtopKLNc6zqzpXNoi1rVpc6EsMJpWzgUEgpULlMcZWWdBicgr5SspZyTo6l3FYb3NcZkXod18ONLI3Qhc5Vpno2UmKgqDDEGdGYV2t6GL8PBbLSaSasZtZofrUaMITmF4gj7BsNf9T-pb3srfX8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Dewangan, Deepak Kumar</creator><creator>Sahu, Satya Prakash</creator><creator>Sairam, Bandi</creator><creator>Agrawal, Aditi</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0160-4215</orcidid></search><sort><creationdate>20211201</creationdate><title>VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation</title><author>Dewangan, Deepak Kumar ; Sahu, Satya Prakash ; Sairam, Bandi ; Agrawal, Aditi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fbe4df40b6755d6abffea9d4db5622a2f5a9fe2309e4f641e3caf50f207c43d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Coders</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Decoding</topic><topic>Encoders-Decoders</topic><topic>Image segmentation</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Intelligent vehicles</topic><topic>Performance evaluation</topic><topic>Regular Paper</topic><topic>Sampling</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Software Engineering</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dewangan, Deepak Kumar</creatorcontrib><creatorcontrib>Sahu, Satya Prakash</creatorcontrib><creatorcontrib>Sairam, Bandi</creatorcontrib><creatorcontrib>Agrawal, Aditi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dewangan, Deepak Kumar</au><au>Sahu, Satya Prakash</au><au>Sairam, Bandi</au><au>Agrawal, Aditi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>103</volume><issue>12</issue><spage>2867</spage><epage>2892</epage><pages>2867-2892</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based approaches such as Radar and LiDAR and have high operational costs. To achieve a steady and optimal lane detection, the vision-based lane region detection scheme VLDNet is proposed which utilizes a encoder-decoder network using semantic segmentation architecture. In this direction, a hybrid model using UNet and ResNet has been adopted, where UNet is used as a segmentation model and ResNet-50 is used for down-sampling the image and identifying the required features. These identified features have been then applied into UNet for up-sampling and decoding the segments of the images. The publicly available KITTI dataset have been accessed for experiments and validation of the proposed network. The method outperforms the existing state-of-the-art methods in lane region detection. The network achieves better performance using standard evaluation measures such as accuracy of 98.87%, the precision of 98.24%, recall of 96.55%, frequency weighted IoU of 97.78%, and MaxF score of 97.77%.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-021-00974-2</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0160-4215</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-485X
ispartof Computing, 2021-12, Vol.103 (12), p.2867-2892
issn 0010-485X
1436-5057
language eng
recordid cdi_proquest_journals_2593746516
source SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete
subjects Artificial Intelligence
Coders
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Decoding
Encoders-Decoders
Image segmentation
Information Systems Applications (incl.Internet)
Intelligent vehicles
Performance evaluation
Regular Paper
Sampling
Semantic segmentation
Semantics
Software Engineering
Vision
title VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VLDNet:%20Vision-based%20lane%20region%20detection%20network%20for%20intelligent%20vehicle%20system%20using%20semantic%20segmentation&rft.jtitle=Computing&rft.au=Dewangan,%20Deepak%20Kumar&rft.date=2021-12-01&rft.volume=103&rft.issue=12&rft.spage=2867&rft.epage=2892&rft.pages=2867-2892&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-021-00974-2&rft_dat=%3Cproquest_cross%3E2593746516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593746516&rft_id=info:pmid/&rfr_iscdi=true