VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation
Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based a...
Gespeichert in:
Veröffentlicht in: | Computing 2021-12, Vol.103 (12), p.2867-2892 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2892 |
---|---|
container_issue | 12 |
container_start_page | 2867 |
container_title | Computing |
container_volume | 103 |
creator | Dewangan, Deepak Kumar Sahu, Satya Prakash Sairam, Bandi Agrawal, Aditi |
description | Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based approaches such as Radar and LiDAR and have high operational costs. To achieve a steady and optimal lane detection, the vision-based lane region detection scheme VLDNet is proposed which utilizes a encoder-decoder network using semantic segmentation architecture. In this direction, a hybrid model using UNet and ResNet has been adopted, where UNet is used as a segmentation model and ResNet-50 is used for down-sampling the image and identifying the required features. These identified features have been then applied into UNet for up-sampling and decoding the segments of the images. The publicly available KITTI dataset have been accessed for experiments and validation of the proposed network. The method outperforms the existing state-of-the-art methods in lane region detection. The network achieves better performance using standard evaluation measures such as accuracy of 98.87%, the precision of 98.24%, recall of 96.55%, frequency weighted IoU of 97.78%, and MaxF score of 97.77%. |
doi_str_mv | 10.1007/s00607-021-00974-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593746516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593746516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fbe4df40b6755d6abffea9d4db5622a2f5a9fe2309e4f641e3caf50f207c43d33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJV2u9yfoJi15UvIW0ndRqm65JVvHf27WCN08zDM_7DjyEHHI45gD5SQTIIGcgOAMocsXEFplxJTOmQefbZAbAgalT_bxL9mJ8BQAhT4sZ6Z-WF3eYzuhTG9vBs9JGrGlnPdKAzXihNSas0mbzmD6H8EbdEGjrE3Zd26BP9ANf2qpDGr9iwp6uY-sbGrG3PrXVuDT9SNlNxT7ZcbaLePA75-Tx6vJhccOW99e3i_MlqyQvEnMlqtopKLNc6zqzpXNoi1rVpc6EsMJpWzgUEgpULlMcZWWdBicgr5SspZyTo6l3FYb3NcZkXod18ONLI3Qhc5Vpno2UmKgqDDEGdGYV2t6GL8PBbLSaSasZtZofrUaMITmF4gj7BsNf9T-pb3srfX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593746516</pqid></control><display><type>article</type><title>VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation</title><source>SpringerLink Journals - AutoHoldings</source><source>EBSCOhost Business Source Complete</source><creator>Dewangan, Deepak Kumar ; Sahu, Satya Prakash ; Sairam, Bandi ; Agrawal, Aditi</creator><creatorcontrib>Dewangan, Deepak Kumar ; Sahu, Satya Prakash ; Sairam, Bandi ; Agrawal, Aditi</creatorcontrib><description>Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based approaches such as Radar and LiDAR and have high operational costs. To achieve a steady and optimal lane detection, the vision-based lane region detection scheme VLDNet is proposed which utilizes a encoder-decoder network using semantic segmentation architecture. In this direction, a hybrid model using UNet and ResNet has been adopted, where UNet is used as a segmentation model and ResNet-50 is used for down-sampling the image and identifying the required features. These identified features have been then applied into UNet for up-sampling and decoding the segments of the images. The publicly available KITTI dataset have been accessed for experiments and validation of the proposed network. The method outperforms the existing state-of-the-art methods in lane region detection. The network achieves better performance using standard evaluation measures such as accuracy of 98.87%, the precision of 98.24%, recall of 96.55%, frequency weighted IoU of 97.78%, and MaxF score of 97.77%.</description><identifier>ISSN: 0010-485X</identifier><identifier>EISSN: 1436-5057</identifier><identifier>DOI: 10.1007/s00607-021-00974-2</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Artificial Intelligence ; Coders ; Computer Appl. in Administrative Data Processing ; Computer Communication Networks ; Computer Science ; Decoding ; Encoders-Decoders ; Image segmentation ; Information Systems Applications (incl.Internet) ; Intelligent vehicles ; Performance evaluation ; Regular Paper ; Sampling ; Semantic segmentation ; Semantics ; Software Engineering ; Vision</subject><ispartof>Computing, 2021-12, Vol.103 (12), p.2867-2892</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fbe4df40b6755d6abffea9d4db5622a2f5a9fe2309e4f641e3caf50f207c43d33</citedby><cites>FETCH-LOGICAL-c319t-fbe4df40b6755d6abffea9d4db5622a2f5a9fe2309e4f641e3caf50f207c43d33</cites><orcidid>0000-0002-0160-4215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00607-021-00974-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00607-021-00974-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dewangan, Deepak Kumar</creatorcontrib><creatorcontrib>Sahu, Satya Prakash</creatorcontrib><creatorcontrib>Sairam, Bandi</creatorcontrib><creatorcontrib>Agrawal, Aditi</creatorcontrib><title>VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation</title><title>Computing</title><addtitle>Computing</addtitle><description>Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based approaches such as Radar and LiDAR and have high operational costs. To achieve a steady and optimal lane detection, the vision-based lane region detection scheme VLDNet is proposed which utilizes a encoder-decoder network using semantic segmentation architecture. In this direction, a hybrid model using UNet and ResNet has been adopted, where UNet is used as a segmentation model and ResNet-50 is used for down-sampling the image and identifying the required features. These identified features have been then applied into UNet for up-sampling and decoding the segments of the images. The publicly available KITTI dataset have been accessed for experiments and validation of the proposed network. The method outperforms the existing state-of-the-art methods in lane region detection. The network achieves better performance using standard evaluation measures such as accuracy of 98.87%, the precision of 98.24%, recall of 96.55%, frequency weighted IoU of 97.78%, and MaxF score of 97.77%.</description><subject>Artificial Intelligence</subject><subject>Coders</subject><subject>Computer Appl. in Administrative Data Processing</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Decoding</subject><subject>Encoders-Decoders</subject><subject>Image segmentation</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Intelligent vehicles</subject><subject>Performance evaluation</subject><subject>Regular Paper</subject><subject>Sampling</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Software Engineering</subject><subject>Vision</subject><issn>0010-485X</issn><issn>1436-5057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJV2u9yfoJi15UvIW0ndRqm65JVvHf27WCN08zDM_7DjyEHHI45gD5SQTIIGcgOAMocsXEFplxJTOmQefbZAbAgalT_bxL9mJ8BQAhT4sZ6Z-WF3eYzuhTG9vBs9JGrGlnPdKAzXihNSas0mbzmD6H8EbdEGjrE3Zd26BP9ANf2qpDGr9iwp6uY-sbGrG3PrXVuDT9SNlNxT7ZcbaLePA75-Tx6vJhccOW99e3i_MlqyQvEnMlqtopKLNc6zqzpXNoi1rVpc6EsMJpWzgUEgpULlMcZWWdBicgr5SspZyTo6l3FYb3NcZkXod18ONLI3Qhc5Vpno2UmKgqDDEGdGYV2t6GL8PBbLSaSasZtZofrUaMITmF4gj7BsNf9T-pb3srfX8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Dewangan, Deepak Kumar</creator><creator>Sahu, Satya Prakash</creator><creator>Sairam, Bandi</creator><creator>Agrawal, Aditi</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0160-4215</orcidid></search><sort><creationdate>20211201</creationdate><title>VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation</title><author>Dewangan, Deepak Kumar ; Sahu, Satya Prakash ; Sairam, Bandi ; Agrawal, Aditi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fbe4df40b6755d6abffea9d4db5622a2f5a9fe2309e4f641e3caf50f207c43d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Coders</topic><topic>Computer Appl. in Administrative Data Processing</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Decoding</topic><topic>Encoders-Decoders</topic><topic>Image segmentation</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Intelligent vehicles</topic><topic>Performance evaluation</topic><topic>Regular Paper</topic><topic>Sampling</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Software Engineering</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dewangan, Deepak Kumar</creatorcontrib><creatorcontrib>Sahu, Satya Prakash</creatorcontrib><creatorcontrib>Sairam, Bandi</creatorcontrib><creatorcontrib>Agrawal, Aditi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dewangan, Deepak Kumar</au><au>Sahu, Satya Prakash</au><au>Sairam, Bandi</au><au>Agrawal, Aditi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation</atitle><jtitle>Computing</jtitle><stitle>Computing</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>103</volume><issue>12</issue><spage>2867</spage><epage>2892</epage><pages>2867-2892</pages><issn>0010-485X</issn><eissn>1436-5057</eissn><abstract>Detection of lane region under the road boundary is an imperative module for intelligent vehicle system. Lane markings provide separate regions on the road for the vehicles to avoid the possibility of accidents. Existing methods in lane detection have limited performance using various sensor-based approaches such as Radar and LiDAR and have high operational costs. To achieve a steady and optimal lane detection, the vision-based lane region detection scheme VLDNet is proposed which utilizes a encoder-decoder network using semantic segmentation architecture. In this direction, a hybrid model using UNet and ResNet has been adopted, where UNet is used as a segmentation model and ResNet-50 is used for down-sampling the image and identifying the required features. These identified features have been then applied into UNet for up-sampling and decoding the segments of the images. The publicly available KITTI dataset have been accessed for experiments and validation of the proposed network. The method outperforms the existing state-of-the-art methods in lane region detection. The network achieves better performance using standard evaluation measures such as accuracy of 98.87%, the precision of 98.24%, recall of 96.55%, frequency weighted IoU of 97.78%, and MaxF score of 97.77%.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00607-021-00974-2</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-0160-4215</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-485X |
ispartof | Computing, 2021-12, Vol.103 (12), p.2867-2892 |
issn | 0010-485X 1436-5057 |
language | eng |
recordid | cdi_proquest_journals_2593746516 |
source | SpringerLink Journals - AutoHoldings; EBSCOhost Business Source Complete |
subjects | Artificial Intelligence Coders Computer Appl. in Administrative Data Processing Computer Communication Networks Computer Science Decoding Encoders-Decoders Image segmentation Information Systems Applications (incl.Internet) Intelligent vehicles Performance evaluation Regular Paper Sampling Semantic segmentation Semantics Software Engineering Vision |
title | VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VLDNet:%20Vision-based%20lane%20region%20detection%20network%20for%20intelligent%20vehicle%20system%20using%20semantic%20segmentation&rft.jtitle=Computing&rft.au=Dewangan,%20Deepak%20Kumar&rft.date=2021-12-01&rft.volume=103&rft.issue=12&rft.spage=2867&rft.epage=2892&rft.pages=2867-2892&rft.issn=0010-485X&rft.eissn=1436-5057&rft_id=info:doi/10.1007/s00607-021-00974-2&rft_dat=%3Cproquest_cross%3E2593746516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593746516&rft_id=info:pmid/&rfr_iscdi=true |