VORTEX: Physics-Driven Data Augmentations Using Consistency Training for Robust Accelerated MRI Reconstruction
Deep neural networks have enabled improved image quality and fast inference times for various inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction. However, such models require a large number of fully-sampled ground truth datasets, which are difficult to curate, an...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Desai, Arjun D Gunel, Beliz Ozturkler, Batu M Beg, Harris Vasanawala, Shreyas Hargreaves, Brian A Ré, Christopher Pauly, John M Chaudhari, Akshay S |
description | Deep neural networks have enabled improved image quality and fast inference times for various inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction. However, such models require a large number of fully-sampled ground truth datasets, which are difficult to curate, and are sensitive to distribution drifts. In this work, we propose applying physics-driven data augmentations for consistency training that leverage our domain knowledge of the forward MRI data acquisition process and MRI physics to achieve improved label efficiency and robustness to clinically-relevant distribution drifts. Our approach, termed VORTEX, (1) demonstrates strong improvements over supervised baselines with and without data augmentation in robustness to signal-to-noise ratio change and motion corruption in data-limited regimes; (2) considerably outperforms state-of-the-art purely image-based data augmentation techniques and self-supervised reconstruction methods on both in-distribution and out-of-distribution data; and (3) enables composing heterogeneous image-based and physics-driven data augmentations. Our code is available at https://github.com/ad12/meddlr. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2593746319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593746319</sourcerecordid><originalsourceid>FETCH-proquest_journals_25937463193</originalsourceid><addsrcrecordid>eNqNjM0KwjAQhIMgKNp3WPBcqIm11pv4gx5EKVW8SYyrRjTRbCL49lbwATzNMN_M1FiTC9GNBz3OGywiuiZJwvsZT1PRZGa7Ksrpbgjry5u0onji9AsNTKSXMArnOxovvbaGYEPanGFcWU0ejXpD6aQ23_BkHRT2EMjDSCm8oZMej7AsFlCgqhbeBfV9abP6Sd4Io5-2WGc2Lcfz-OHsMyD5_dUGZyq052kusl5fdHPxX-sD4q5J2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593746319</pqid></control><display><type>article</type><title>VORTEX: Physics-Driven Data Augmentations Using Consistency Training for Robust Accelerated MRI Reconstruction</title><source>Free E- Journals</source><creator>Desai, Arjun D ; Gunel, Beliz ; Ozturkler, Batu M ; Beg, Harris ; Vasanawala, Shreyas ; Hargreaves, Brian A ; Ré, Christopher ; Pauly, John M ; Chaudhari, Akshay S</creator><creatorcontrib>Desai, Arjun D ; Gunel, Beliz ; Ozturkler, Batu M ; Beg, Harris ; Vasanawala, Shreyas ; Hargreaves, Brian A ; Ré, Christopher ; Pauly, John M ; Chaudhari, Akshay S</creatorcontrib><description>Deep neural networks have enabled improved image quality and fast inference times for various inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction. However, such models require a large number of fully-sampled ground truth datasets, which are difficult to curate, and are sensitive to distribution drifts. In this work, we propose applying physics-driven data augmentations for consistency training that leverage our domain knowledge of the forward MRI data acquisition process and MRI physics to achieve improved label efficiency and robustness to clinically-relevant distribution drifts. Our approach, termed VORTEX, (1) demonstrates strong improvements over supervised baselines with and without data augmentation in robustness to signal-to-noise ratio change and motion corruption in data-limited regimes; (2) considerably outperforms state-of-the-art purely image-based data augmentation techniques and self-supervised reconstruction methods on both in-distribution and out-of-distribution data; and (3) enables composing heterogeneous image-based and physics-driven data augmentations. Our code is available at https://github.com/ad12/meddlr.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Consistency ; Data augmentation ; Image quality ; Image reconstruction ; Inverse problems ; Magnetic resonance imaging ; Physics ; Robustness ; Signal to noise ratio ; Training</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Desai, Arjun D</creatorcontrib><creatorcontrib>Gunel, Beliz</creatorcontrib><creatorcontrib>Ozturkler, Batu M</creatorcontrib><creatorcontrib>Beg, Harris</creatorcontrib><creatorcontrib>Vasanawala, Shreyas</creatorcontrib><creatorcontrib>Hargreaves, Brian A</creatorcontrib><creatorcontrib>Ré, Christopher</creatorcontrib><creatorcontrib>Pauly, John M</creatorcontrib><creatorcontrib>Chaudhari, Akshay S</creatorcontrib><title>VORTEX: Physics-Driven Data Augmentations Using Consistency Training for Robust Accelerated MRI Reconstruction</title><title>arXiv.org</title><description>Deep neural networks have enabled improved image quality and fast inference times for various inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction. However, such models require a large number of fully-sampled ground truth datasets, which are difficult to curate, and are sensitive to distribution drifts. In this work, we propose applying physics-driven data augmentations for consistency training that leverage our domain knowledge of the forward MRI data acquisition process and MRI physics to achieve improved label efficiency and robustness to clinically-relevant distribution drifts. Our approach, termed VORTEX, (1) demonstrates strong improvements over supervised baselines with and without data augmentation in robustness to signal-to-noise ratio change and motion corruption in data-limited regimes; (2) considerably outperforms state-of-the-art purely image-based data augmentation techniques and self-supervised reconstruction methods on both in-distribution and out-of-distribution data; and (3) enables composing heterogeneous image-based and physics-driven data augmentations. Our code is available at https://github.com/ad12/meddlr.</description><subject>Artificial neural networks</subject><subject>Consistency</subject><subject>Data augmentation</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Magnetic resonance imaging</subject><subject>Physics</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0KwjAQhIMgKNp3WPBcqIm11pv4gx5EKVW8SYyrRjTRbCL49lbwATzNMN_M1FiTC9GNBz3OGywiuiZJwvsZT1PRZGa7Ksrpbgjry5u0onji9AsNTKSXMArnOxovvbaGYEPanGFcWU0ejXpD6aQ23_BkHRT2EMjDSCm8oZMej7AsFlCgqhbeBfV9abP6Sd4Io5-2WGc2Lcfz-OHsMyD5_dUGZyq052kusl5fdHPxX-sD4q5J2Q</recordid><startdate>20220617</startdate><enddate>20220617</enddate><creator>Desai, Arjun D</creator><creator>Gunel, Beliz</creator><creator>Ozturkler, Batu M</creator><creator>Beg, Harris</creator><creator>Vasanawala, Shreyas</creator><creator>Hargreaves, Brian A</creator><creator>Ré, Christopher</creator><creator>Pauly, John M</creator><creator>Chaudhari, Akshay S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220617</creationdate><title>VORTEX: Physics-Driven Data Augmentations Using Consistency Training for Robust Accelerated MRI Reconstruction</title><author>Desai, Arjun D ; Gunel, Beliz ; Ozturkler, Batu M ; Beg, Harris ; Vasanawala, Shreyas ; Hargreaves, Brian A ; Ré, Christopher ; Pauly, John M ; Chaudhari, Akshay S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25937463193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Consistency</topic><topic>Data augmentation</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Magnetic resonance imaging</topic><topic>Physics</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Desai, Arjun D</creatorcontrib><creatorcontrib>Gunel, Beliz</creatorcontrib><creatorcontrib>Ozturkler, Batu M</creatorcontrib><creatorcontrib>Beg, Harris</creatorcontrib><creatorcontrib>Vasanawala, Shreyas</creatorcontrib><creatorcontrib>Hargreaves, Brian A</creatorcontrib><creatorcontrib>Ré, Christopher</creatorcontrib><creatorcontrib>Pauly, John M</creatorcontrib><creatorcontrib>Chaudhari, Akshay S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Arjun D</au><au>Gunel, Beliz</au><au>Ozturkler, Batu M</au><au>Beg, Harris</au><au>Vasanawala, Shreyas</au><au>Hargreaves, Brian A</au><au>Ré, Christopher</au><au>Pauly, John M</au><au>Chaudhari, Akshay S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>VORTEX: Physics-Driven Data Augmentations Using Consistency Training for Robust Accelerated MRI Reconstruction</atitle><jtitle>arXiv.org</jtitle><date>2022-06-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Deep neural networks have enabled improved image quality and fast inference times for various inverse problems, including accelerated magnetic resonance imaging (MRI) reconstruction. However, such models require a large number of fully-sampled ground truth datasets, which are difficult to curate, and are sensitive to distribution drifts. In this work, we propose applying physics-driven data augmentations for consistency training that leverage our domain knowledge of the forward MRI data acquisition process and MRI physics to achieve improved label efficiency and robustness to clinically-relevant distribution drifts. Our approach, termed VORTEX, (1) demonstrates strong improvements over supervised baselines with and without data augmentation in robustness to signal-to-noise ratio change and motion corruption in data-limited regimes; (2) considerably outperforms state-of-the-art purely image-based data augmentation techniques and self-supervised reconstruction methods on both in-distribution and out-of-distribution data; and (3) enables composing heterogeneous image-based and physics-driven data augmentations. Our code is available at https://github.com/ad12/meddlr.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2593746319 |
source | Free E- Journals |
subjects | Artificial neural networks Consistency Data augmentation Image quality Image reconstruction Inverse problems Magnetic resonance imaging Physics Robustness Signal to noise ratio Training |
title | VORTEX: Physics-Driven Data Augmentations Using Consistency Training for Robust Accelerated MRI Reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=VORTEX:%20Physics-Driven%20Data%20Augmentations%20Using%20Consistency%20Training%20for%20Robust%20Accelerated%20MRI%20Reconstruction&rft.jtitle=arXiv.org&rft.au=Desai,%20Arjun%20D&rft.date=2022-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2593746319%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593746319&rft_id=info:pmid/&rfr_iscdi=true |