Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis
Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to...
Gespeichert in:
Veröffentlicht in: | Cancer gene therapy 2021-11, Vol.28 (10-11), p.1150-1161 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1161 |
---|---|
container_issue | 10-11 |
container_start_page | 1150 |
container_title | Cancer gene therapy |
container_volume | 28 |
creator | Hu, Fangke Jiang, Chengying Bu, Guoyun Fu, Yiru Yu, Yanfang |
description | Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment. |
doi_str_mv | 10.1038/s41417-020-00264-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2593746233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681421202</galeid><sourcerecordid>A681421202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-31c5f1e6cf88263080ccde891bcc09b469461f359bedd43a90bb95c6f99f906f3</originalsourceid><addsrcrecordid>eNp9Ul1rFTEQXUSx1-of8EECQt9SJx-b3TxeilahKPjxHLLZ5DZlN1mT7EN_kv_SXLdaCyKBDDNzziRzOE3zksA5Ada_yZxw0mGggAGo4Lh71OwI7wRuW4DHzQ4klZhIYCfNs5xvAGqzY0-bE8Y40I6RXfPji59sMD4c0BTrFWIwcTymnz_ukYm1iIwOxiasc47G62JHVJIO2SS_FEzQuiR7WKfayGj2JsXKxIxr3C6oRLSkOMdij3HyziZdfJ2pw4hG72puQ_FbLToUc7FxmHQuGfmwpUtMMfv8vHni9JTti7t42nx79_brxXt89enyw8X-ChvesYIZMa0jVhjX91Qw6MGY0faSDMaAHLiQXBDHWjnYceRMSxgG2RrhpHQShGOnzettbv3w99Xmom7imkJ9UtFWso4Lytg96qAnq3xwsWpiZp-N2ouecEoo0Io6_weqntFWpWKwrqr_kHD2F-Ha6qlc5zitR33yQyDdgFXvnJN1akl-1ulWEVBHd6jNHaq6Q_1yh-oq6dXdausw2_EP5bcdKoBtgFxb4WDT_e7_GfsTJyrGSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593746233</pqid></control><display><type>article</type><title>Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Hu, Fangke ; Jiang, Chengying ; Bu, Guoyun ; Fu, Yiru ; Yu, Yanfang</creator><creatorcontrib>Hu, Fangke ; Jiang, Chengying ; Bu, Guoyun ; Fu, Yiru ; Yu, Yanfang</creatorcontrib><description>Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment.</description><identifier>ISSN: 0929-1903</identifier><identifier>EISSN: 1476-5500</identifier><identifier>DOI: 10.1038/s41417-020-00264-7</identifier><identifier>PMID: 33402731</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/31 ; 13/51 ; 38/109 ; 631/208/199 ; 631/80 ; Animals ; Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Bone growth ; Carcinogenesis ; Cell Differentiation ; Cell Proliferation ; Colon cancer ; Colorectal cancer ; Development and progression ; Disease Models, Animal ; Disease Progression ; Female ; Gene Expression ; Gene Therapy ; Genetic aspects ; Health aspects ; Humans ; Mineralization ; miRNA ; Non-coding RNA ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - metabolism ; Osteogenesis ; Osteoporosis ; Osteoporosis - genetics ; Osteoporosis - pathology ; Ovariectomy ; Pathology ; Physiological aspects ; Rats ; Rats, Sprague-Dawley ; RNA ; RNA, Long Noncoding - metabolism ; RNA-mediated interference ; siRNA ; Transcription ; Up-Regulation</subject><ispartof>Cancer gene therapy, 2021-11, Vol.28 (10-11), p.1150-1161</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-31c5f1e6cf88263080ccde891bcc09b469461f359bedd43a90bb95c6f99f906f3</citedby><cites>FETCH-LOGICAL-c473t-31c5f1e6cf88263080ccde891bcc09b469461f359bedd43a90bb95c6f99f906f3</cites><orcidid>0000-0001-8022-516X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41417-020-00264-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41417-020-00264-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33402731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Fangke</creatorcontrib><creatorcontrib>Jiang, Chengying</creatorcontrib><creatorcontrib>Bu, Guoyun</creatorcontrib><creatorcontrib>Fu, Yiru</creatorcontrib><creatorcontrib>Yu, Yanfang</creatorcontrib><title>Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis</title><title>Cancer gene therapy</title><addtitle>Cancer Gene Ther</addtitle><addtitle>Cancer Gene Ther</addtitle><description>Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment.</description><subject>13/31</subject><subject>13/51</subject><subject>38/109</subject><subject>631/208/199</subject><subject>631/80</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone growth</subject><subject>Carcinogenesis</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Mineralization</subject><subject>miRNA</subject><subject>Non-coding RNA</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Osteoporosis - genetics</subject><subject>Osteoporosis - pathology</subject><subject>Ovariectomy</subject><subject>Pathology</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA-mediated interference</subject><subject>siRNA</subject><subject>Transcription</subject><subject>Up-Regulation</subject><issn>0929-1903</issn><issn>1476-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Ul1rFTEQXUSx1-of8EECQt9SJx-b3TxeilahKPjxHLLZ5DZlN1mT7EN_kv_SXLdaCyKBDDNzziRzOE3zksA5Ada_yZxw0mGggAGo4Lh71OwI7wRuW4DHzQ4klZhIYCfNs5xvAGqzY0-bE8Y40I6RXfPji59sMD4c0BTrFWIwcTymnz_ukYm1iIwOxiasc47G62JHVJIO2SS_FEzQuiR7WKfayGj2JsXKxIxr3C6oRLSkOMdij3HyziZdfJ2pw4hG72puQ_FbLToUc7FxmHQuGfmwpUtMMfv8vHni9JTti7t42nx79_brxXt89enyw8X-ChvesYIZMa0jVhjX91Qw6MGY0faSDMaAHLiQXBDHWjnYceRMSxgG2RrhpHQShGOnzettbv3w99Xmom7imkJ9UtFWso4Lytg96qAnq3xwsWpiZp-N2ouecEoo0Io6_weqntFWpWKwrqr_kHD2F-Ha6qlc5zitR33yQyDdgFXvnJN1akl-1ulWEVBHd6jNHaq6Q_1yh-oq6dXdausw2_EP5bcdKoBtgFxb4WDT_e7_GfsTJyrGSQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hu, Fangke</creator><creator>Jiang, Chengying</creator><creator>Bu, Guoyun</creator><creator>Fu, Yiru</creator><creator>Yu, Yanfang</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8022-516X</orcidid></search><sort><creationdate>20211101</creationdate><title>Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis</title><author>Hu, Fangke ; Jiang, Chengying ; Bu, Guoyun ; Fu, Yiru ; Yu, Yanfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-31c5f1e6cf88263080ccde891bcc09b469461f359bedd43a90bb95c6f99f906f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/31</topic><topic>13/51</topic><topic>38/109</topic><topic>631/208/199</topic><topic>631/80</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone growth</topic><topic>Carcinogenesis</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Mineralization</topic><topic>miRNA</topic><topic>Non-coding RNA</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Osteoporosis - genetics</topic><topic>Osteoporosis - pathology</topic><topic>Ovariectomy</topic><topic>Pathology</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA-mediated interference</topic><topic>siRNA</topic><topic>Transcription</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Fangke</creatorcontrib><creatorcontrib>Jiang, Chengying</creatorcontrib><creatorcontrib>Bu, Guoyun</creatorcontrib><creatorcontrib>Fu, Yiru</creatorcontrib><creatorcontrib>Yu, Yanfang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>Cancer gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Fangke</au><au>Jiang, Chengying</au><au>Bu, Guoyun</au><au>Fu, Yiru</au><au>Yu, Yanfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis</atitle><jtitle>Cancer gene therapy</jtitle><stitle>Cancer Gene Ther</stitle><addtitle>Cancer Gene Ther</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>28</volume><issue>10-11</issue><spage>1150</spage><epage>1161</epage><pages>1150-1161</pages><issn>0929-1903</issn><eissn>1476-5500</eissn><abstract>Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33402731</pmid><doi>10.1038/s41417-020-00264-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8022-516X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-1903 |
ispartof | Cancer gene therapy, 2021-11, Vol.28 (10-11), p.1150-1161 |
issn | 0929-1903 1476-5500 |
language | eng |
recordid | cdi_proquest_journals_2593746233 |
source | MEDLINE; SpringerLink Journals |
subjects | 13/31 13/51 38/109 631/208/199 631/80 Animals Apoptosis Biomedical and Life Sciences Biomedicine Bone growth Carcinogenesis Cell Differentiation Cell Proliferation Colon cancer Colorectal cancer Development and progression Disease Models, Animal Disease Progression Female Gene Expression Gene Therapy Genetic aspects Health aspects Humans Mineralization miRNA Non-coding RNA Osteoblastogenesis Osteoblasts Osteoblasts - metabolism Osteogenesis Osteoporosis Osteoporosis - genetics Osteoporosis - pathology Ovariectomy Pathology Physiological aspects Rats Rats, Sprague-Dawley RNA RNA, Long Noncoding - metabolism RNA-mediated interference siRNA Transcription Up-Regulation |
title | Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20long%20noncoding%20RNA%20colon%20cancer-associated%20transcript-1%20upregulates%20microRNA-34a-5p%20to%20promote%20proliferation%20and%20differentiation%20of%20osteoblasts%20in%20osteoporosis&rft.jtitle=Cancer%20gene%20therapy&rft.au=Hu,%20Fangke&rft.date=2021-11-01&rft.volume=28&rft.issue=10-11&rft.spage=1150&rft.epage=1161&rft.pages=1150-1161&rft.issn=0929-1903&rft.eissn=1476-5500&rft_id=info:doi/10.1038/s41417-020-00264-7&rft_dat=%3Cgale_proqu%3EA681421202%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593746233&rft_id=info:pmid/33402731&rft_galeid=A681421202&rfr_iscdi=true |