Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis

Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer gene therapy 2021-11, Vol.28 (10-11), p.1150-1161
Hauptverfasser: Hu, Fangke, Jiang, Chengying, Bu, Guoyun, Fu, Yiru, Yu, Yanfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1161
container_issue 10-11
container_start_page 1150
container_title Cancer gene therapy
container_volume 28
creator Hu, Fangke
Jiang, Chengying
Bu, Guoyun
Fu, Yiru
Yu, Yanfang
description Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment.
doi_str_mv 10.1038/s41417-020-00264-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2593746233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681421202</galeid><sourcerecordid>A681421202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-31c5f1e6cf88263080ccde891bcc09b469461f359bedd43a90bb95c6f99f906f3</originalsourceid><addsrcrecordid>eNp9Ul1rFTEQXUSx1-of8EECQt9SJx-b3TxeilahKPjxHLLZ5DZlN1mT7EN_kv_SXLdaCyKBDDNzziRzOE3zksA5Ada_yZxw0mGggAGo4Lh71OwI7wRuW4DHzQ4klZhIYCfNs5xvAGqzY0-bE8Y40I6RXfPji59sMD4c0BTrFWIwcTymnz_ukYm1iIwOxiasc47G62JHVJIO2SS_FEzQuiR7WKfayGj2JsXKxIxr3C6oRLSkOMdij3HyziZdfJ2pw4hG72puQ_FbLToUc7FxmHQuGfmwpUtMMfv8vHni9JTti7t42nx79_brxXt89enyw8X-ChvesYIZMa0jVhjX91Qw6MGY0faSDMaAHLiQXBDHWjnYceRMSxgG2RrhpHQShGOnzettbv3w99Xmom7imkJ9UtFWso4Lytg96qAnq3xwsWpiZp-N2ouecEoo0Io6_weqntFWpWKwrqr_kHD2F-Ha6qlc5zitR33yQyDdgFXvnJN1akl-1ulWEVBHd6jNHaq6Q_1yh-oq6dXdausw2_EP5bcdKoBtgFxb4WDT_e7_GfsTJyrGSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593746233</pqid></control><display><type>article</type><title>Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Hu, Fangke ; Jiang, Chengying ; Bu, Guoyun ; Fu, Yiru ; Yu, Yanfang</creator><creatorcontrib>Hu, Fangke ; Jiang, Chengying ; Bu, Guoyun ; Fu, Yiru ; Yu, Yanfang</creatorcontrib><description>Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment.</description><identifier>ISSN: 0929-1903</identifier><identifier>EISSN: 1476-5500</identifier><identifier>DOI: 10.1038/s41417-020-00264-7</identifier><identifier>PMID: 33402731</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/31 ; 13/51 ; 38/109 ; 631/208/199 ; 631/80 ; Animals ; Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Bone growth ; Carcinogenesis ; Cell Differentiation ; Cell Proliferation ; Colon cancer ; Colorectal cancer ; Development and progression ; Disease Models, Animal ; Disease Progression ; Female ; Gene Expression ; Gene Therapy ; Genetic aspects ; Health aspects ; Humans ; Mineralization ; miRNA ; Non-coding RNA ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - metabolism ; Osteogenesis ; Osteoporosis ; Osteoporosis - genetics ; Osteoporosis - pathology ; Ovariectomy ; Pathology ; Physiological aspects ; Rats ; Rats, Sprague-Dawley ; RNA ; RNA, Long Noncoding - metabolism ; RNA-mediated interference ; siRNA ; Transcription ; Up-Regulation</subject><ispartof>Cancer gene therapy, 2021-11, Vol.28 (10-11), p.1150-1161</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-31c5f1e6cf88263080ccde891bcc09b469461f359bedd43a90bb95c6f99f906f3</citedby><cites>FETCH-LOGICAL-c473t-31c5f1e6cf88263080ccde891bcc09b469461f359bedd43a90bb95c6f99f906f3</cites><orcidid>0000-0001-8022-516X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41417-020-00264-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41417-020-00264-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33402731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Fangke</creatorcontrib><creatorcontrib>Jiang, Chengying</creatorcontrib><creatorcontrib>Bu, Guoyun</creatorcontrib><creatorcontrib>Fu, Yiru</creatorcontrib><creatorcontrib>Yu, Yanfang</creatorcontrib><title>Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis</title><title>Cancer gene therapy</title><addtitle>Cancer Gene Ther</addtitle><addtitle>Cancer Gene Ther</addtitle><description>Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment.</description><subject>13/31</subject><subject>13/51</subject><subject>38/109</subject><subject>631/208/199</subject><subject>631/80</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone growth</subject><subject>Carcinogenesis</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>Development and progression</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Mineralization</subject><subject>miRNA</subject><subject>Non-coding RNA</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Osteoporosis - genetics</subject><subject>Osteoporosis - pathology</subject><subject>Ovariectomy</subject><subject>Pathology</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA-mediated interference</subject><subject>siRNA</subject><subject>Transcription</subject><subject>Up-Regulation</subject><issn>0929-1903</issn><issn>1476-5500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9Ul1rFTEQXUSx1-of8EECQt9SJx-b3TxeilahKPjxHLLZ5DZlN1mT7EN_kv_SXLdaCyKBDDNzziRzOE3zksA5Ada_yZxw0mGggAGo4Lh71OwI7wRuW4DHzQ4klZhIYCfNs5xvAGqzY0-bE8Y40I6RXfPji59sMD4c0BTrFWIwcTymnz_ukYm1iIwOxiasc47G62JHVJIO2SS_FEzQuiR7WKfayGj2JsXKxIxr3C6oRLSkOMdij3HyziZdfJ2pw4hG72puQ_FbLToUc7FxmHQuGfmwpUtMMfv8vHni9JTti7t42nx79_brxXt89enyw8X-ChvesYIZMa0jVhjX91Qw6MGY0faSDMaAHLiQXBDHWjnYceRMSxgG2RrhpHQShGOnzettbv3w99Xmom7imkJ9UtFWso4Lytg96qAnq3xwsWpiZp-N2ouecEoo0Io6_weqntFWpWKwrqr_kHD2F-Ha6qlc5zitR33yQyDdgFXvnJN1akl-1ulWEVBHd6jNHaq6Q_1yh-oq6dXdausw2_EP5bcdKoBtgFxb4WDT_e7_GfsTJyrGSQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hu, Fangke</creator><creator>Jiang, Chengying</creator><creator>Bu, Guoyun</creator><creator>Fu, Yiru</creator><creator>Yu, Yanfang</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8022-516X</orcidid></search><sort><creationdate>20211101</creationdate><title>Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis</title><author>Hu, Fangke ; Jiang, Chengying ; Bu, Guoyun ; Fu, Yiru ; Yu, Yanfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-31c5f1e6cf88263080ccde891bcc09b469461f359bedd43a90bb95c6f99f906f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/31</topic><topic>13/51</topic><topic>38/109</topic><topic>631/208/199</topic><topic>631/80</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone growth</topic><topic>Carcinogenesis</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>Development and progression</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Mineralization</topic><topic>miRNA</topic><topic>Non-coding RNA</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Osteoporosis - genetics</topic><topic>Osteoporosis - pathology</topic><topic>Ovariectomy</topic><topic>Pathology</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA-mediated interference</topic><topic>siRNA</topic><topic>Transcription</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Fangke</creatorcontrib><creatorcontrib>Jiang, Chengying</creatorcontrib><creatorcontrib>Bu, Guoyun</creatorcontrib><creatorcontrib>Fu, Yiru</creatorcontrib><creatorcontrib>Yu, Yanfang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>Cancer gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Fangke</au><au>Jiang, Chengying</au><au>Bu, Guoyun</au><au>Fu, Yiru</au><au>Yu, Yanfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis</atitle><jtitle>Cancer gene therapy</jtitle><stitle>Cancer Gene Ther</stitle><addtitle>Cancer Gene Ther</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>28</volume><issue>10-11</issue><spage>1150</spage><epage>1161</epage><pages>1150-1161</pages><issn>0929-1903</issn><eissn>1476-5500</eissn><abstract>Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>33402731</pmid><doi>10.1038/s41417-020-00264-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8022-516X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-1903
ispartof Cancer gene therapy, 2021-11, Vol.28 (10-11), p.1150-1161
issn 0929-1903
1476-5500
language eng
recordid cdi_proquest_journals_2593746233
source MEDLINE; SpringerLink Journals
subjects 13/31
13/51
38/109
631/208/199
631/80
Animals
Apoptosis
Biomedical and Life Sciences
Biomedicine
Bone growth
Carcinogenesis
Cell Differentiation
Cell Proliferation
Colon cancer
Colorectal cancer
Development and progression
Disease Models, Animal
Disease Progression
Female
Gene Expression
Gene Therapy
Genetic aspects
Health aspects
Humans
Mineralization
miRNA
Non-coding RNA
Osteoblastogenesis
Osteoblasts
Osteoblasts - metabolism
Osteogenesis
Osteoporosis
Osteoporosis - genetics
Osteoporosis - pathology
Ovariectomy
Pathology
Physiological aspects
Rats
Rats, Sprague-Dawley
RNA
RNA, Long Noncoding - metabolism
RNA-mediated interference
siRNA
Transcription
Up-Regulation
title Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20long%20noncoding%20RNA%20colon%20cancer-associated%20transcript-1%20upregulates%20microRNA-34a-5p%20to%20promote%20proliferation%20and%20differentiation%20of%20osteoblasts%20in%20osteoporosis&rft.jtitle=Cancer%20gene%20therapy&rft.au=Hu,%20Fangke&rft.date=2021-11-01&rft.volume=28&rft.issue=10-11&rft.spage=1150&rft.epage=1161&rft.pages=1150-1161&rft.issn=0929-1903&rft.eissn=1476-5500&rft_id=info:doi/10.1038/s41417-020-00264-7&rft_dat=%3Cgale_proqu%3EA681421202%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593746233&rft_id=info:pmid/33402731&rft_galeid=A681421202&rfr_iscdi=true