Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator
Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic...
Gespeichert in:
Veröffentlicht in: | Plasmonics (Norwell, Mass.) Mass.), 2021-12, Vol.16 (6), p.1983-1990 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1990 |
---|---|
container_issue | 6 |
container_start_page | 1983 |
container_title | Plasmonics (Norwell, Mass.) |
container_volume | 16 |
creator | Hamedi, Samaneh Negahdari, Roozbeh Ansari, Hamid Reza |
description | Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing. |
doi_str_mv | 10.1007/s11468-021-01461-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593626940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593626940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2782-b6fb32a297cdb756e5eec1980dfed50d46f58c8b97ecf47ef9c2033f5d2229a53</originalsourceid><addsrcrecordid>eNp9kD1OAzEQRi0EEiFwASpL1Av2rO1dl5CEHylSUASitLxeO2yUrIO9KdLRcgIOxE04CSZB0NHMTPG-b6SH0Ckl55SQ4iJSykSZEaAZSRfNYA_1KOdFRqXI939vzg_RUYxzQhhjgvXQ09DGZtbi-4WOS982Bk9WXWP0ArPP17eP9zQAj1rjaxvwlY62xr7FMMT3z77b8oOwiV3ip007w1Mbfas7H47RgdOLaE9-dh89Xo8eBrfZeHJzN7gcZwaKErJKuCoHDbIwdVVwYbm1hsqS1M7WnNRMOF6aspKFNY4V1kkDJM8drwFAap730dmudxX8y9rGTs39OrTppQIucwFCMpIo2FEm-BiDdWoVmqUOG0WJ-haodgJVEqi2AhWkUL4LxQS3Mxv-qv9JfQEHTHSz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593626940</pqid></control><display><type>article</type><title>Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hamedi, Samaneh ; Negahdari, Roozbeh ; Ansari, Hamid Reza</creator><creatorcontrib>Hamedi, Samaneh ; Negahdari, Roozbeh ; Ansari, Hamid Reza</creatorcontrib><description>Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-021-01461-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Coders ; Crystal defects ; Crystal lattices ; Crystal structure ; Digital signal processing ; Nanotechnology ; Optical communication ; Optical properties ; Photonic crystals ; Plane waves ; Plasmonics ; Resonators ; Rods ; Time domain analysis ; Transmission efficiency ; Waveguides</subject><ispartof>Plasmonics (Norwell, Mass.), 2021-12, Vol.16 (6), p.1983-1990</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2782-b6fb32a297cdb756e5eec1980dfed50d46f58c8b97ecf47ef9c2033f5d2229a53</citedby><cites>FETCH-LOGICAL-c2782-b6fb32a297cdb756e5eec1980dfed50d46f58c8b97ecf47ef9c2033f5d2229a53</cites><orcidid>0000-0003-1393-5609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11468-021-01461-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11468-021-01461-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hamedi, Samaneh</creatorcontrib><creatorcontrib>Negahdari, Roozbeh</creatorcontrib><creatorcontrib>Ansari, Hamid Reza</creatorcontrib><title>Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coders</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Digital signal processing</subject><subject>Nanotechnology</subject><subject>Optical communication</subject><subject>Optical properties</subject><subject>Photonic crystals</subject><subject>Plane waves</subject><subject>Plasmonics</subject><subject>Resonators</subject><subject>Rods</subject><subject>Time domain analysis</subject><subject>Transmission efficiency</subject><subject>Waveguides</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQRi0EEiFwASpL1Av2rO1dl5CEHylSUASitLxeO2yUrIO9KdLRcgIOxE04CSZB0NHMTPG-b6SH0Ckl55SQ4iJSykSZEaAZSRfNYA_1KOdFRqXI939vzg_RUYxzQhhjgvXQ09DGZtbi-4WOS982Bk9WXWP0ArPP17eP9zQAj1rjaxvwlY62xr7FMMT3z77b8oOwiV3ip007w1Mbfas7H47RgdOLaE9-dh89Xo8eBrfZeHJzN7gcZwaKErJKuCoHDbIwdVVwYbm1hsqS1M7WnNRMOF6aspKFNY4V1kkDJM8drwFAap730dmudxX8y9rGTs39OrTppQIucwFCMpIo2FEm-BiDdWoVmqUOG0WJ-haodgJVEqi2AhWkUL4LxQS3Mxv-qv9JfQEHTHSz</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Hamedi, Samaneh</creator><creator>Negahdari, Roozbeh</creator><creator>Ansari, Hamid Reza</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1393-5609</orcidid></search><sort><creationdate>20211201</creationdate><title>Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator</title><author>Hamedi, Samaneh ; Negahdari, Roozbeh ; Ansari, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2782-b6fb32a297cdb756e5eec1980dfed50d46f58c8b97ecf47ef9c2033f5d2229a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coders</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Digital signal processing</topic><topic>Nanotechnology</topic><topic>Optical communication</topic><topic>Optical properties</topic><topic>Photonic crystals</topic><topic>Plane waves</topic><topic>Plasmonics</topic><topic>Resonators</topic><topic>Rods</topic><topic>Time domain analysis</topic><topic>Transmission efficiency</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamedi, Samaneh</creatorcontrib><creatorcontrib>Negahdari, Roozbeh</creatorcontrib><creatorcontrib>Ansari, Hamid Reza</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamedi, Samaneh</au><au>Negahdari, Roozbeh</au><au>Ansari, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>1983</spage><epage>1990</epage><pages>1983-1990</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-021-01461-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1393-5609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-1955 |
ispartof | Plasmonics (Norwell, Mass.), 2021-12, Vol.16 (6), p.1983-1990 |
issn | 1557-1955 1557-1963 |
language | eng |
recordid | cdi_proquest_journals_2593626940 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biological and Medical Physics Biophysics Biotechnology Chemistry Chemistry and Materials Science Coders Crystal defects Crystal lattices Crystal structure Digital signal processing Nanotechnology Optical communication Optical properties Photonic crystals Plane waves Plasmonics Resonators Rods Time domain analysis Transmission efficiency Waveguides |
title | Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Plasmonic%20Optical%204%E2%80%89%C3%97%E2%80%892%20Encoder%20Based%20on%202D%20Photonic%20Crystal%20Ring%20Resonator&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Hamedi,%20Samaneh&rft.date=2021-12-01&rft.volume=16&rft.issue=6&rft.spage=1983&rft.epage=1990&rft.pages=1983-1990&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-021-01461-2&rft_dat=%3Cproquest_cross%3E2593626940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593626940&rft_id=info:pmid/&rfr_iscdi=true |