Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator

Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasmonics (Norwell, Mass.) Mass.), 2021-12, Vol.16 (6), p.1983-1990
Hauptverfasser: Hamedi, Samaneh, Negahdari, Roozbeh, Ansari, Hamid Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1990
container_issue 6
container_start_page 1983
container_title Plasmonics (Norwell, Mass.)
container_volume 16
creator Hamedi, Samaneh
Negahdari, Roozbeh
Ansari, Hamid Reza
description Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing.
doi_str_mv 10.1007/s11468-021-01461-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593626940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593626940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2782-b6fb32a297cdb756e5eec1980dfed50d46f58c8b97ecf47ef9c2033f5d2229a53</originalsourceid><addsrcrecordid>eNp9kD1OAzEQRi0EEiFwASpL1Av2rO1dl5CEHylSUASitLxeO2yUrIO9KdLRcgIOxE04CSZB0NHMTPG-b6SH0Ckl55SQ4iJSykSZEaAZSRfNYA_1KOdFRqXI939vzg_RUYxzQhhjgvXQ09DGZtbi-4WOS982Bk9WXWP0ArPP17eP9zQAj1rjaxvwlY62xr7FMMT3z77b8oOwiV3ip007w1Mbfas7H47RgdOLaE9-dh89Xo8eBrfZeHJzN7gcZwaKErJKuCoHDbIwdVVwYbm1hsqS1M7WnNRMOF6aspKFNY4V1kkDJM8drwFAap730dmudxX8y9rGTs39OrTppQIucwFCMpIo2FEm-BiDdWoVmqUOG0WJ-haodgJVEqi2AhWkUL4LxQS3Mxv-qv9JfQEHTHSz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593626940</pqid></control><display><type>article</type><title>Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hamedi, Samaneh ; Negahdari, Roozbeh ; Ansari, Hamid Reza</creator><creatorcontrib>Hamedi, Samaneh ; Negahdari, Roozbeh ; Ansari, Hamid Reza</creatorcontrib><description>Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-021-01461-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Coders ; Crystal defects ; Crystal lattices ; Crystal structure ; Digital signal processing ; Nanotechnology ; Optical communication ; Optical properties ; Photonic crystals ; Plane waves ; Plasmonics ; Resonators ; Rods ; Time domain analysis ; Transmission efficiency ; Waveguides</subject><ispartof>Plasmonics (Norwell, Mass.), 2021-12, Vol.16 (6), p.1983-1990</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2782-b6fb32a297cdb756e5eec1980dfed50d46f58c8b97ecf47ef9c2033f5d2229a53</citedby><cites>FETCH-LOGICAL-c2782-b6fb32a297cdb756e5eec1980dfed50d46f58c8b97ecf47ef9c2033f5d2229a53</cites><orcidid>0000-0003-1393-5609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11468-021-01461-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11468-021-01461-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hamedi, Samaneh</creatorcontrib><creatorcontrib>Negahdari, Roozbeh</creatorcontrib><creatorcontrib>Ansari, Hamid Reza</creatorcontrib><title>Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coders</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Digital signal processing</subject><subject>Nanotechnology</subject><subject>Optical communication</subject><subject>Optical properties</subject><subject>Photonic crystals</subject><subject>Plane waves</subject><subject>Plasmonics</subject><subject>Resonators</subject><subject>Rods</subject><subject>Time domain analysis</subject><subject>Transmission efficiency</subject><subject>Waveguides</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQRi0EEiFwASpL1Av2rO1dl5CEHylSUASitLxeO2yUrIO9KdLRcgIOxE04CSZB0NHMTPG-b6SH0Ckl55SQ4iJSykSZEaAZSRfNYA_1KOdFRqXI939vzg_RUYxzQhhjgvXQ09DGZtbi-4WOS982Bk9WXWP0ArPP17eP9zQAj1rjaxvwlY62xr7FMMT3z77b8oOwiV3ip007w1Mbfas7H47RgdOLaE9-dh89Xo8eBrfZeHJzN7gcZwaKErJKuCoHDbIwdVVwYbm1hsqS1M7WnNRMOF6aspKFNY4V1kkDJM8drwFAap730dmudxX8y9rGTs39OrTppQIucwFCMpIo2FEm-BiDdWoVmqUOG0WJ-haodgJVEqi2AhWkUL4LxQS3Mxv-qv9JfQEHTHSz</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Hamedi, Samaneh</creator><creator>Negahdari, Roozbeh</creator><creator>Ansari, Hamid Reza</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1393-5609</orcidid></search><sort><creationdate>20211201</creationdate><title>Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator</title><author>Hamedi, Samaneh ; Negahdari, Roozbeh ; Ansari, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2782-b6fb32a297cdb756e5eec1980dfed50d46f58c8b97ecf47ef9c2033f5d2229a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coders</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Digital signal processing</topic><topic>Nanotechnology</topic><topic>Optical communication</topic><topic>Optical properties</topic><topic>Photonic crystals</topic><topic>Plane waves</topic><topic>Plasmonics</topic><topic>Resonators</topic><topic>Rods</topic><topic>Time domain analysis</topic><topic>Transmission efficiency</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamedi, Samaneh</creatorcontrib><creatorcontrib>Negahdari, Roozbeh</creatorcontrib><creatorcontrib>Ansari, Hamid Reza</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamedi, Samaneh</au><au>Negahdari, Roozbeh</au><au>Ansari, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>1983</spage><epage>1990</epage><pages>1983-1990</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>Digital encoders are one of the key devices required in optical communication and digital signal processing systems. In this paper, a new photonic crystal structure is used to design all-optical 4 × 2 encoder constructed from GaAs rods with square lattice in the pentane background based on plasmonic effect. Gold rods have also been used at the interface of dielectric rods and lines defect, which create plasmonic properties into the photonic crystal structure. The designed optical device is composed of four input waveguides and two output waveguides with two ring resonators at the resonant wavelength of 1.14 μm with TM polarization. The presented encoder platform has the small size of 19 μm × 33 μm that makes it to integration into compact all-optical processing systems. The encoder operation is simulated and analyzed with numerical finite-difference time-domain (FDTD) method and plane wave expansion (PWE) method. In the proposed structure, we have shown that by selecting the appropriate radius size for the resonant cavities, the desirable wavelength can be obtained. The maximum values of transmission efficiency for the first and second outputs are 82% and 96%, respectively. Resonant cavities are also located in the crystal lattice in such a way that by activating third input, 50% and 48% of the input signal will be obtained in each output ports indicating (1,1) logic state. So the new plasmonic photonic crystal encoder could be future applicable in the field of optical computing.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-021-01461-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1393-5609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1557-1955
ispartof Plasmonics (Norwell, Mass.), 2021-12, Vol.16 (6), p.1983-1990
issn 1557-1955
1557-1963
language eng
recordid cdi_proquest_journals_2593626940
source SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Chemistry
Chemistry and Materials Science
Coders
Crystal defects
Crystal lattices
Crystal structure
Digital signal processing
Nanotechnology
Optical communication
Optical properties
Photonic crystals
Plane waves
Plasmonics
Resonators
Rods
Time domain analysis
Transmission efficiency
Waveguides
title Design Plasmonic Optical 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Plasmonic%20Optical%204%E2%80%89%C3%97%E2%80%892%20Encoder%20Based%20on%202D%20Photonic%20Crystal%20Ring%20Resonator&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Hamedi,%20Samaneh&rft.date=2021-12-01&rft.volume=16&rft.issue=6&rft.spage=1983&rft.epage=1990&rft.pages=1983-1990&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-021-01461-2&rft_dat=%3Cproquest_cross%3E2593626940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593626940&rft_id=info:pmid/&rfr_iscdi=true