Assessing Optimal Digital Elevation Model Selection for Active River Area Delineation Across Broad Regions

The Active River Area (ARA) is a spatial approach for identifying the extent of functional riparian area. Given known limitations in terms of input elevation data quality, ARA studies to date have not achieved effective computer-based ARA components delineation, limiting the efficacy of the ARA fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2021-11, Vol.35 (14), p.4825-4840
Hauptverfasser: Ma, Shizhou, Beazley, Karen F., Nussey, Patrick, Greene, Christopher S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4840
container_issue 14
container_start_page 4825
container_title Water resources management
container_volume 35
creator Ma, Shizhou
Beazley, Karen F.
Nussey, Patrick
Greene, Christopher S.
description The Active River Area (ARA) is a spatial approach for identifying the extent of functional riparian area. Given known limitations in terms of input elevation data quality, ARA studies to date have not achieved effective computer-based ARA components delineation, limiting the efficacy of the ARA framework in terms of informing riparian conservation and management. To determine the optimal input elevation data for future ARA studies, this study tested a novel digital elevation model (DEM) smoothing algorithm and assessed ARA outputs derived from a range of DEMs for accuracy and efficiency. It was found that the tested DEM smoothing algorithm allows the ARA framework to take advantage of high-resolution LiDAR DEM and considerably improves the accuracy of high-resolution LiDAR DEM derived ARA results; smoothed LiDAR DEM in 5-m spatial resolution best balanced ARA accuracy and data processing efficiency and is ultimately recommended for future ARA delineations across large regions. The scientific findings provided by this study further enhance the efficacy of the ARA framework, and ultimately the confidence in modelled ARA outputs for application in riparian conservation and management contexts across broad geographic regions.
doi_str_mv 10.1007/s11269-021-02948-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593362698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593362698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5bf6e911f59cb8d77ee43e10964535211beeffcc2fa31e5f729ef4bcf73169bf3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19WcpGmWy7rND5gMpl6HNjspHbWdSTfw3xtbwTsvcj7C-5zkvIRcA7sFxtRdAOCZThiHeHQ6S9QJmYBUIoFMslMyYZqzJFUpnJOLEHaMRUyzCdnlIWAIdVvR9b6vP4qGLuqq7mNeNngs-rpr6Uu3xYa-YoN26F3naR7LI9JNDLHxWNAFNnWLI5Fb34VA731XbOkGq3gXLsmZK5qAV795St4flm_zp2S1fnye56vEikz0iSxdhhrASW3L2VYpxFQgMJ2lUkgOUCI6Zy13hQCUTnGNLi2tUwIyXToxJTfj3L3vPg8YerPrDr6NTxoutRBZdGoWVXxUDT_16Mzex_X9lwFmfjw1o6cmemoGT42KkBihEMVthf5v9D_UNwN5esg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593362698</pqid></control><display><type>article</type><title>Assessing Optimal Digital Elevation Model Selection for Active River Area Delineation Across Broad Regions</title><source>Springer Nature - Complete Springer Journals</source><creator>Ma, Shizhou ; Beazley, Karen F. ; Nussey, Patrick ; Greene, Christopher S.</creator><creatorcontrib>Ma, Shizhou ; Beazley, Karen F. ; Nussey, Patrick ; Greene, Christopher S.</creatorcontrib><description>The Active River Area (ARA) is a spatial approach for identifying the extent of functional riparian area. Given known limitations in terms of input elevation data quality, ARA studies to date have not achieved effective computer-based ARA components delineation, limiting the efficacy of the ARA framework in terms of informing riparian conservation and management. To determine the optimal input elevation data for future ARA studies, this study tested a novel digital elevation model (DEM) smoothing algorithm and assessed ARA outputs derived from a range of DEMs for accuracy and efficiency. It was found that the tested DEM smoothing algorithm allows the ARA framework to take advantage of high-resolution LiDAR DEM and considerably improves the accuracy of high-resolution LiDAR DEM derived ARA results; smoothed LiDAR DEM in 5-m spatial resolution best balanced ARA accuracy and data processing efficiency and is ultimately recommended for future ARA delineations across large regions. The scientific findings provided by this study further enhance the efficacy of the ARA framework, and ultimately the confidence in modelled ARA outputs for application in riparian conservation and management contexts across broad geographic regions.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-021-02948-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Algorithms ; Atmospheric Sciences ; Civil Engineering ; Conservation ; Data analysis ; Data processing ; Delineation ; Digital Elevation Models ; Earth and Environmental Science ; Earth Sciences ; Elevation ; Environment ; Frameworks ; Geotechnical Engineering &amp; Applied Earth Sciences ; High resolution ; Hydrogeology ; Hydrology/Water Resources ; Lidar ; Regions ; Resolution ; Rivers ; Smoothing ; Spatial discrimination ; Spatial resolution</subject><ispartof>Water resources management, 2021-11, Vol.35 (14), p.4825-4840</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5bf6e911f59cb8d77ee43e10964535211beeffcc2fa31e5f729ef4bcf73169bf3</citedby><cites>FETCH-LOGICAL-c363t-5bf6e911f59cb8d77ee43e10964535211beeffcc2fa31e5f729ef4bcf73169bf3</cites><orcidid>0000-0002-2997-6221 ; 0000-0001-8407-6632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-021-02948-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-021-02948-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ma, Shizhou</creatorcontrib><creatorcontrib>Beazley, Karen F.</creatorcontrib><creatorcontrib>Nussey, Patrick</creatorcontrib><creatorcontrib>Greene, Christopher S.</creatorcontrib><title>Assessing Optimal Digital Elevation Model Selection for Active River Area Delineation Across Broad Regions</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>The Active River Area (ARA) is a spatial approach for identifying the extent of functional riparian area. Given known limitations in terms of input elevation data quality, ARA studies to date have not achieved effective computer-based ARA components delineation, limiting the efficacy of the ARA framework in terms of informing riparian conservation and management. To determine the optimal input elevation data for future ARA studies, this study tested a novel digital elevation model (DEM) smoothing algorithm and assessed ARA outputs derived from a range of DEMs for accuracy and efficiency. It was found that the tested DEM smoothing algorithm allows the ARA framework to take advantage of high-resolution LiDAR DEM and considerably improves the accuracy of high-resolution LiDAR DEM derived ARA results; smoothed LiDAR DEM in 5-m spatial resolution best balanced ARA accuracy and data processing efficiency and is ultimately recommended for future ARA delineations across large regions. The scientific findings provided by this study further enhance the efficacy of the ARA framework, and ultimately the confidence in modelled ARA outputs for application in riparian conservation and management contexts across broad geographic regions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>Conservation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Delineation</subject><subject>Digital Elevation Models</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Elevation</subject><subject>Environment</subject><subject>Frameworks</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>High resolution</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Lidar</subject><subject>Regions</subject><subject>Resolution</subject><subject>Rivers</subject><subject>Smoothing</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19WcpGmWy7rND5gMpl6HNjspHbWdSTfw3xtbwTsvcj7C-5zkvIRcA7sFxtRdAOCZThiHeHQ6S9QJmYBUIoFMslMyYZqzJFUpnJOLEHaMRUyzCdnlIWAIdVvR9b6vP4qGLuqq7mNeNngs-rpr6Uu3xYa-YoN26F3naR7LI9JNDLHxWNAFNnWLI5Fb34VA731XbOkGq3gXLsmZK5qAV795St4flm_zp2S1fnye56vEikz0iSxdhhrASW3L2VYpxFQgMJ2lUkgOUCI6Zy13hQCUTnGNLi2tUwIyXToxJTfj3L3vPg8YerPrDr6NTxoutRBZdGoWVXxUDT_16Mzex_X9lwFmfjw1o6cmemoGT42KkBihEMVthf5v9D_UNwN5esg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ma, Shizhou</creator><creator>Beazley, Karen F.</creator><creator>Nussey, Patrick</creator><creator>Greene, Christopher S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2997-6221</orcidid><orcidid>https://orcid.org/0000-0001-8407-6632</orcidid></search><sort><creationdate>20211101</creationdate><title>Assessing Optimal Digital Elevation Model Selection for Active River Area Delineation Across Broad Regions</title><author>Ma, Shizhou ; Beazley, Karen F. ; Nussey, Patrick ; Greene, Christopher S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5bf6e911f59cb8d77ee43e10964535211beeffcc2fa31e5f729ef4bcf73169bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>Conservation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Delineation</topic><topic>Digital Elevation Models</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Elevation</topic><topic>Environment</topic><topic>Frameworks</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>High resolution</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Lidar</topic><topic>Regions</topic><topic>Resolution</topic><topic>Rivers</topic><topic>Smoothing</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shizhou</creatorcontrib><creatorcontrib>Beazley, Karen F.</creatorcontrib><creatorcontrib>Nussey, Patrick</creatorcontrib><creatorcontrib>Greene, Christopher S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shizhou</au><au>Beazley, Karen F.</au><au>Nussey, Patrick</au><au>Greene, Christopher S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing Optimal Digital Elevation Model Selection for Active River Area Delineation Across Broad Regions</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>35</volume><issue>14</issue><spage>4825</spage><epage>4840</epage><pages>4825-4840</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>The Active River Area (ARA) is a spatial approach for identifying the extent of functional riparian area. Given known limitations in terms of input elevation data quality, ARA studies to date have not achieved effective computer-based ARA components delineation, limiting the efficacy of the ARA framework in terms of informing riparian conservation and management. To determine the optimal input elevation data for future ARA studies, this study tested a novel digital elevation model (DEM) smoothing algorithm and assessed ARA outputs derived from a range of DEMs for accuracy and efficiency. It was found that the tested DEM smoothing algorithm allows the ARA framework to take advantage of high-resolution LiDAR DEM and considerably improves the accuracy of high-resolution LiDAR DEM derived ARA results; smoothed LiDAR DEM in 5-m spatial resolution best balanced ARA accuracy and data processing efficiency and is ultimately recommended for future ARA delineations across large regions. The scientific findings provided by this study further enhance the efficacy of the ARA framework, and ultimately the confidence in modelled ARA outputs for application in riparian conservation and management contexts across broad geographic regions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-021-02948-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2997-6221</orcidid><orcidid>https://orcid.org/0000-0001-8407-6632</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2021-11, Vol.35 (14), p.4825-4840
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_journals_2593362698
source Springer Nature - Complete Springer Journals
subjects Accuracy
Algorithms
Atmospheric Sciences
Civil Engineering
Conservation
Data analysis
Data processing
Delineation
Digital Elevation Models
Earth and Environmental Science
Earth Sciences
Elevation
Environment
Frameworks
Geotechnical Engineering & Applied Earth Sciences
High resolution
Hydrogeology
Hydrology/Water Resources
Lidar
Regions
Resolution
Rivers
Smoothing
Spatial discrimination
Spatial resolution
title Assessing Optimal Digital Elevation Model Selection for Active River Area Delineation Across Broad Regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20Optimal%20Digital%20Elevation%20Model%20Selection%20for%20Active%20River%20Area%20Delineation%20Across%20Broad%20Regions&rft.jtitle=Water%20resources%20management&rft.au=Ma,%20Shizhou&rft.date=2021-11-01&rft.volume=35&rft.issue=14&rft.spage=4825&rft.epage=4840&rft.pages=4825-4840&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-021-02948-7&rft_dat=%3Cproquest_cross%3E2593362698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593362698&rft_id=info:pmid/&rfr_iscdi=true