Design optimization of multimorphology surface-based lattice structures with density gradients

Graded structure design based on triply periodic minimal surface (TPMS) structures can effectively improve the stiffness of lightweight structures. To further improve the structural stiffness of these lattice structures, a novel optimization method combing performance characteristics of various morp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-12, Vol.117 (7-8), p.2013-2028
Hauptverfasser: Shi, Xin, Liao, Wenhe, Liu, Tingting, Zhang, Changdong, Li, Dawei, Jiang, Weiming, Wang, Cong, Ren, Fangxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2028
container_issue 7-8
container_start_page 2013
container_title International journal of advanced manufacturing technology
container_volume 117
creator Shi, Xin
Liao, Wenhe
Liu, Tingting
Zhang, Changdong
Li, Dawei
Jiang, Weiming
Wang, Cong
Ren, Fangxi
description Graded structure design based on triply periodic minimal surface (TPMS) structures can effectively improve the stiffness of lightweight structures. To further improve the structural stiffness of these lattice structures, a novel optimization method combing performance characteristics of various morphology lattice structures is proposed. First, a discrete homogenization method based on the ABAQUS software is proposed to rapidly obtain the effective elastic properties of the TPMS structures. Then the effective elastic properties of three typical types of TPMS (iWp [W], IW, and primitive [P]) structures are studied for later design optimization. The size effect of TPMS structures is also studied, and the validity of effective compression modulus of three TPMS structures is verified by experiments. Third, density mapping, based on topology optimization (TO), and interpolation approaches are used to obtain the optimized lattice structure with a density gradient. The selective filling function of unit cells is given to obtain a suitable cell topology distribution across the design space. Finally, the effectiveness of the optimized results is verified by finite element analysis (FEA) and experiments.
doi_str_mv 10.1007/s00170-021-07175-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593360858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593360858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-abcc5782eef95fd3f46f88bb72c8809342e7635f4da32e14248acc8d62e1df313</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19F8tEm6lPETBDe6NaRp0snQaWqSIuOvNzqCO1eP-zj3PTgAnBN8STAWVwljIjDClCAsiKgROwALUjGGGCb1IVhgyiVigstjcJLSpuCccLkAbzc2-X6EYcp-6z919qEEB7fzUBYhTuswhH4H0xydNha1OtkODjpnbyxMOc4mz9Em-OHzGnZ2TD7vYB915-2Y0yk4cnpI9ux3LsHr3e3L6gE9Pd8_rq6fkGGkyUi3xtRCUmtdU7uOuYo7KdtWUCMlblhFreCsdlWnGbWkopXUxsiOl9A5RtgSXOzvTjG8zzZltQlzHMtLReuGMY5lLQtF95SJIaVonZqi3-q4UwSrb49q71EVj-rHo2KlxPalVOCxt_Hv9D-tL8z5eCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593360858</pqid></control><display><type>article</type><title>Design optimization of multimorphology surface-based lattice structures with density gradients</title><source>SpringerLink Journals</source><creator>Shi, Xin ; Liao, Wenhe ; Liu, Tingting ; Zhang, Changdong ; Li, Dawei ; Jiang, Weiming ; Wang, Cong ; Ren, Fangxi</creator><creatorcontrib>Shi, Xin ; Liao, Wenhe ; Liu, Tingting ; Zhang, Changdong ; Li, Dawei ; Jiang, Weiming ; Wang, Cong ; Ren, Fangxi</creatorcontrib><description>Graded structure design based on triply periodic minimal surface (TPMS) structures can effectively improve the stiffness of lightweight structures. To further improve the structural stiffness of these lattice structures, a novel optimization method combing performance characteristics of various morphology lattice structures is proposed. First, a discrete homogenization method based on the ABAQUS software is proposed to rapidly obtain the effective elastic properties of the TPMS structures. Then the effective elastic properties of three typical types of TPMS (iWp [W], IW, and primitive [P]) structures are studied for later design optimization. The size effect of TPMS structures is also studied, and the validity of effective compression modulus of three TPMS structures is verified by experiments. Third, density mapping, based on topology optimization (TO), and interpolation approaches are used to obtain the optimized lattice structure with a density gradient. The selective filling function of unit cells is given to obtain a suitable cell topology distribution across the design space. Finally, the effectiveness of the optimized results is verified by finite element analysis (FEA) and experiments.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-021-07175-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Computer-Aided Engineering (CAD ; Density gradients ; Design optimization ; Elastic properties ; Engineering ; Finite element method ; Industrial and Production Engineering ; Interpolation ; Mathematical models ; Mathematical morphology ; Mechanical Engineering ; Media Management ; Minimal surfaces ; Original Article ; Size effects ; Stiffness ; Topology optimization</subject><ispartof>International journal of advanced manufacturing technology, 2021-12, Vol.117 (7-8), p.2013-2028</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-abcc5782eef95fd3f46f88bb72c8809342e7635f4da32e14248acc8d62e1df313</citedby><cites>FETCH-LOGICAL-c319t-abcc5782eef95fd3f46f88bb72c8809342e7635f4da32e14248acc8d62e1df313</cites><orcidid>0000-0002-7549-4610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-021-07175-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-021-07175-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shi, Xin</creatorcontrib><creatorcontrib>Liao, Wenhe</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Zhang, Changdong</creatorcontrib><creatorcontrib>Li, Dawei</creatorcontrib><creatorcontrib>Jiang, Weiming</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Ren, Fangxi</creatorcontrib><title>Design optimization of multimorphology surface-based lattice structures with density gradients</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>Graded structure design based on triply periodic minimal surface (TPMS) structures can effectively improve the stiffness of lightweight structures. To further improve the structural stiffness of these lattice structures, a novel optimization method combing performance characteristics of various morphology lattice structures is proposed. First, a discrete homogenization method based on the ABAQUS software is proposed to rapidly obtain the effective elastic properties of the TPMS structures. Then the effective elastic properties of three typical types of TPMS (iWp [W], IW, and primitive [P]) structures are studied for later design optimization. The size effect of TPMS structures is also studied, and the validity of effective compression modulus of three TPMS structures is verified by experiments. Third, density mapping, based on topology optimization (TO), and interpolation approaches are used to obtain the optimized lattice structure with a density gradient. The selective filling function of unit cells is given to obtain a suitable cell topology distribution across the design space. Finally, the effectiveness of the optimized results is verified by finite element analysis (FEA) and experiments.</description><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Density gradients</subject><subject>Design optimization</subject><subject>Elastic properties</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Industrial and Production Engineering</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Mathematical morphology</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Minimal surfaces</subject><subject>Original Article</subject><subject>Size effects</subject><subject>Stiffness</subject><subject>Topology optimization</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcB19F8tEm6lPETBDe6NaRp0snQaWqSIuOvNzqCO1eP-zj3PTgAnBN8STAWVwljIjDClCAsiKgROwALUjGGGCb1IVhgyiVigstjcJLSpuCccLkAbzc2-X6EYcp-6z919qEEB7fzUBYhTuswhH4H0xydNha1OtkODjpnbyxMOc4mz9Em-OHzGnZ2TD7vYB915-2Y0yk4cnpI9ux3LsHr3e3L6gE9Pd8_rq6fkGGkyUi3xtRCUmtdU7uOuYo7KdtWUCMlblhFreCsdlWnGbWkopXUxsiOl9A5RtgSXOzvTjG8zzZltQlzHMtLReuGMY5lLQtF95SJIaVonZqi3-q4UwSrb49q71EVj-rHo2KlxPalVOCxt_Hv9D-tL8z5eCI</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shi, Xin</creator><creator>Liao, Wenhe</creator><creator>Liu, Tingting</creator><creator>Zhang, Changdong</creator><creator>Li, Dawei</creator><creator>Jiang, Weiming</creator><creator>Wang, Cong</creator><creator>Ren, Fangxi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7549-4610</orcidid></search><sort><creationdate>20211201</creationdate><title>Design optimization of multimorphology surface-based lattice structures with density gradients</title><author>Shi, Xin ; Liao, Wenhe ; Liu, Tingting ; Zhang, Changdong ; Li, Dawei ; Jiang, Weiming ; Wang, Cong ; Ren, Fangxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-abcc5782eef95fd3f46f88bb72c8809342e7635f4da32e14248acc8d62e1df313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Density gradients</topic><topic>Design optimization</topic><topic>Elastic properties</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Industrial and Production Engineering</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Mathematical morphology</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Minimal surfaces</topic><topic>Original Article</topic><topic>Size effects</topic><topic>Stiffness</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xin</creatorcontrib><creatorcontrib>Liao, Wenhe</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Zhang, Changdong</creatorcontrib><creatorcontrib>Li, Dawei</creatorcontrib><creatorcontrib>Jiang, Weiming</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Ren, Fangxi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xin</au><au>Liao, Wenhe</au><au>Liu, Tingting</au><au>Zhang, Changdong</au><au>Li, Dawei</au><au>Jiang, Weiming</au><au>Wang, Cong</au><au>Ren, Fangxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design optimization of multimorphology surface-based lattice structures with density gradients</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>117</volume><issue>7-8</issue><spage>2013</spage><epage>2028</epage><pages>2013-2028</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>Graded structure design based on triply periodic minimal surface (TPMS) structures can effectively improve the stiffness of lightweight structures. To further improve the structural stiffness of these lattice structures, a novel optimization method combing performance characteristics of various morphology lattice structures is proposed. First, a discrete homogenization method based on the ABAQUS software is proposed to rapidly obtain the effective elastic properties of the TPMS structures. Then the effective elastic properties of three typical types of TPMS (iWp [W], IW, and primitive [P]) structures are studied for later design optimization. The size effect of TPMS structures is also studied, and the validity of effective compression modulus of three TPMS structures is verified by experiments. Third, density mapping, based on topology optimization (TO), and interpolation approaches are used to obtain the optimized lattice structure with a density gradient. The selective filling function of unit cells is given to obtain a suitable cell topology distribution across the design space. Finally, the effectiveness of the optimized results is verified by finite element analysis (FEA) and experiments.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-021-07175-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7549-4610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2021-12, Vol.117 (7-8), p.2013-2028
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2593360858
source SpringerLink Journals
subjects CAE) and Design
Computer-Aided Engineering (CAD
Density gradients
Design optimization
Elastic properties
Engineering
Finite element method
Industrial and Production Engineering
Interpolation
Mathematical models
Mathematical morphology
Mechanical Engineering
Media Management
Minimal surfaces
Original Article
Size effects
Stiffness
Topology optimization
title Design optimization of multimorphology surface-based lattice structures with density gradients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20optimization%20of%20multimorphology%20surface-based%20lattice%20structures%20with%20density%20gradients&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Shi,%20Xin&rft.date=2021-12-01&rft.volume=117&rft.issue=7-8&rft.spage=2013&rft.epage=2028&rft.pages=2013-2028&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-021-07175-3&rft_dat=%3Cproquest_cross%3E2593360858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593360858&rft_id=info:pmid/&rfr_iscdi=true