Forecasting with Multivariate Threshold Autoregressive Models
An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecast...
Gespeichert in:
Veröffentlicht in: | Revista Colombiana de estadística 2021-12, Vol.44 (2), p.369-383 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 383 |
---|---|
container_issue | 2 |
container_start_page | 369 |
container_title | Revista Colombiana de estadística |
container_volume | 44 |
creator | Calderon, Sergio Nieto, Fabio H. |
description | An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.
|
doi_str_mv | 10.15446/rce.v44n2.91356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593201650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593201650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-fdaee37f88f29ea7e27a1ee0d17991fa4c55a985af283e46842e4bc664da69133</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKt7lwOup-blOwsXpVgVWtzUdYgzL-2UcaYmmYr_3qF19bhwuJd3CLkHOgMphHqMFc6OQnRsZoFLdUEmjBtbGqvVJZlQYLQELeGa3KS0p1QZxWBCnpZ9xMqn3HTb4qfJu2I9tLk5-tj4jMVmFzHt-rYu5kMeye0YU3PEYt3X2KZbchV8m_Du_07Jx_J5s3gtV-8vb4v5qqxAm1yG2iNyHYwJzKLXyLQHRFqDthaCF5WU3hrpAzMchTKCofislBK1V-M3fEoezr2H2H8PmLLb90PsxknHpOWMgpJ0pOiZqmKfUsTgDrH58vHXAXUnSW6U5E6S3EkS_wN_BFwW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593201650</pqid></control><display><type>article</type><title>Forecasting with Multivariate Threshold Autoregressive Models</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Calderon, Sergio ; Nieto, Fabio H.</creator><creatorcontrib>Calderon, Sergio ; Nieto, Fabio H.</creatorcontrib><description>An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.
</description><identifier>ISSN: 0120-1751</identifier><identifier>EISSN: 2389-8976</identifier><identifier>DOI: 10.15446/rce.v44n2.91356</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Autoregressive models ; Bayesian analysis ; Forecasting ; Hydrology ; Multivariate analysis ; Time series</subject><ispartof>Revista Colombiana de estadística, 2021-12, Vol.44 (2), p.369-383</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c178t-fdaee37f88f29ea7e27a1ee0d17991fa4c55a985af283e46842e4bc664da69133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Calderon, Sergio</creatorcontrib><creatorcontrib>Nieto, Fabio H.</creatorcontrib><title>Forecasting with Multivariate Threshold Autoregressive Models</title><title>Revista Colombiana de estadística</title><description>An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.
</description><subject>Autoregressive models</subject><subject>Bayesian analysis</subject><subject>Forecasting</subject><subject>Hydrology</subject><subject>Multivariate analysis</subject><subject>Time series</subject><issn>0120-1751</issn><issn>2389-8976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEURYMoWKt7lwOup-blOwsXpVgVWtzUdYgzL-2UcaYmmYr_3qF19bhwuJd3CLkHOgMphHqMFc6OQnRsZoFLdUEmjBtbGqvVJZlQYLQELeGa3KS0p1QZxWBCnpZ9xMqn3HTb4qfJu2I9tLk5-tj4jMVmFzHt-rYu5kMeye0YU3PEYt3X2KZbchV8m_Du_07Jx_J5s3gtV-8vb4v5qqxAm1yG2iNyHYwJzKLXyLQHRFqDthaCF5WU3hrpAzMchTKCofislBK1V-M3fEoezr2H2H8PmLLb90PsxknHpOWMgpJ0pOiZqmKfUsTgDrH58vHXAXUnSW6U5E6S3EkS_wN_BFwW</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Calderon, Sergio</creator><creator>Nieto, Fabio H.</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211201</creationdate><title>Forecasting with Multivariate Threshold Autoregressive Models</title><author>Calderon, Sergio ; Nieto, Fabio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-fdaee37f88f29ea7e27a1ee0d17991fa4c55a985af283e46842e4bc664da69133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive models</topic><topic>Bayesian analysis</topic><topic>Forecasting</topic><topic>Hydrology</topic><topic>Multivariate analysis</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calderon, Sergio</creatorcontrib><creatorcontrib>Nieto, Fabio H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Revista Colombiana de estadística</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calderon, Sergio</au><au>Nieto, Fabio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting with Multivariate Threshold Autoregressive Models</atitle><jtitle>Revista Colombiana de estadística</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>369</spage><epage>383</epage><pages>369-383</pages><issn>0120-1751</issn><eissn>2389-8976</eissn><abstract>An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.
</abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/rce.v44n2.91356</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0120-1751 |
ispartof | Revista Colombiana de estadística, 2021-12, Vol.44 (2), p.369-383 |
issn | 0120-1751 2389-8976 |
language | eng |
recordid | cdi_proquest_journals_2593201650 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Autoregressive models Bayesian analysis Forecasting Hydrology Multivariate analysis Time series |
title | Forecasting with Multivariate Threshold Autoregressive Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20with%20Multivariate%20Threshold%20Autoregressive%20Models&rft.jtitle=Revista%20Colombiana%20de%20estadi%CC%81stica&rft.au=Calderon,%20Sergio&rft.date=2021-12-01&rft.volume=44&rft.issue=2&rft.spage=369&rft.epage=383&rft.pages=369-383&rft.issn=0120-1751&rft.eissn=2389-8976&rft_id=info:doi/10.15446/rce.v44n2.91356&rft_dat=%3Cproquest_cross%3E2593201650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593201650&rft_id=info:pmid/&rfr_iscdi=true |