Forecasting with Multivariate Threshold Autoregressive Models

An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Colombiana de estadística 2021-12, Vol.44 (2), p.369-383
Hauptverfasser: Calderon, Sergio, Nieto, Fabio H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 2
container_start_page 369
container_title Revista Colombiana de estadística
container_volume 44
creator Calderon, Sergio
Nieto, Fabio H.
description An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.  
doi_str_mv 10.15446/rce.v44n2.91356
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593201650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593201650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c178t-fdaee37f88f29ea7e27a1ee0d17991fa4c55a985af283e46842e4bc664da69133</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKt7lwOup-blOwsXpVgVWtzUdYgzL-2UcaYmmYr_3qF19bhwuJd3CLkHOgMphHqMFc6OQnRsZoFLdUEmjBtbGqvVJZlQYLQELeGa3KS0p1QZxWBCnpZ9xMqn3HTb4qfJu2I9tLk5-tj4jMVmFzHt-rYu5kMeye0YU3PEYt3X2KZbchV8m_Du_07Jx_J5s3gtV-8vb4v5qqxAm1yG2iNyHYwJzKLXyLQHRFqDthaCF5WU3hrpAzMchTKCofislBK1V-M3fEoezr2H2H8PmLLb90PsxknHpOWMgpJ0pOiZqmKfUsTgDrH58vHXAXUnSW6U5E6S3EkS_wN_BFwW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593201650</pqid></control><display><type>article</type><title>Forecasting with Multivariate Threshold Autoregressive Models</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Calderon, Sergio ; Nieto, Fabio H.</creator><creatorcontrib>Calderon, Sergio ; Nieto, Fabio H.</creatorcontrib><description>An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.  </description><identifier>ISSN: 0120-1751</identifier><identifier>EISSN: 2389-8976</identifier><identifier>DOI: 10.15446/rce.v44n2.91356</identifier><language>eng</language><publisher>Bogota: Universidad Nacional de Colombia</publisher><subject>Autoregressive models ; Bayesian analysis ; Forecasting ; Hydrology ; Multivariate analysis ; Time series</subject><ispartof>Revista Colombiana de estadística, 2021-12, Vol.44 (2), p.369-383</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c178t-fdaee37f88f29ea7e27a1ee0d17991fa4c55a985af283e46842e4bc664da69133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Calderon, Sergio</creatorcontrib><creatorcontrib>Nieto, Fabio H.</creatorcontrib><title>Forecasting with Multivariate Threshold Autoregressive Models</title><title>Revista Colombiana de estadística</title><description>An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.  </description><subject>Autoregressive models</subject><subject>Bayesian analysis</subject><subject>Forecasting</subject><subject>Hydrology</subject><subject>Multivariate analysis</subject><subject>Time series</subject><issn>0120-1751</issn><issn>2389-8976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEURYMoWKt7lwOup-blOwsXpVgVWtzUdYgzL-2UcaYmmYr_3qF19bhwuJd3CLkHOgMphHqMFc6OQnRsZoFLdUEmjBtbGqvVJZlQYLQELeGa3KS0p1QZxWBCnpZ9xMqn3HTb4qfJu2I9tLk5-tj4jMVmFzHt-rYu5kMeye0YU3PEYt3X2KZbchV8m_Du_07Jx_J5s3gtV-8vb4v5qqxAm1yG2iNyHYwJzKLXyLQHRFqDthaCF5WU3hrpAzMchTKCofislBK1V-M3fEoezr2H2H8PmLLb90PsxknHpOWMgpJ0pOiZqmKfUsTgDrH58vHXAXUnSW6U5E6S3EkS_wN_BFwW</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Calderon, Sergio</creator><creator>Nieto, Fabio H.</creator><general>Universidad Nacional de Colombia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211201</creationdate><title>Forecasting with Multivariate Threshold Autoregressive Models</title><author>Calderon, Sergio ; Nieto, Fabio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c178t-fdaee37f88f29ea7e27a1ee0d17991fa4c55a985af283e46842e4bc664da69133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive models</topic><topic>Bayesian analysis</topic><topic>Forecasting</topic><topic>Hydrology</topic><topic>Multivariate analysis</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calderon, Sergio</creatorcontrib><creatorcontrib>Nieto, Fabio H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Revista Colombiana de estadística</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calderon, Sergio</au><au>Nieto, Fabio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting with Multivariate Threshold Autoregressive Models</atitle><jtitle>Revista Colombiana de estadística</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>369</spage><epage>383</epage><pages>369-383</pages><issn>0120-1751</issn><eissn>2389-8976</eissn><abstract>An important stage in the analysis of time series is the forecasting. How- ever, the forecasting in non-linear time series models is not straightforward as in linear time series models because an exact analytical of the conditional expectation is not easy to obtain. Therefore, a strategy of forecasting with multivariate threshold autoregressive(MTAR) models is proposed via predictive distributions through Bayesian approach. This strategy gives us the forecast for the response and exogenous vectors. The coverage percentages of the forecast intervals and the variability of the predictive distributions are analysed in this work. An application to Hydrology is presented.  </abstract><cop>Bogota</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/rce.v44n2.91356</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0120-1751
ispartof Revista Colombiana de estadística, 2021-12, Vol.44 (2), p.369-383
issn 0120-1751
2389-8976
language eng
recordid cdi_proquest_journals_2593201650
source EZB-FREE-00999 freely available EZB journals
subjects Autoregressive models
Bayesian analysis
Forecasting
Hydrology
Multivariate analysis
Time series
title Forecasting with Multivariate Threshold Autoregressive Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20with%20Multivariate%20Threshold%20Autoregressive%20Models&rft.jtitle=Revista%20Colombiana%20de%20estadi%CC%81stica&rft.au=Calderon,%20Sergio&rft.date=2021-12-01&rft.volume=44&rft.issue=2&rft.spage=369&rft.epage=383&rft.pages=369-383&rft.issn=0120-1751&rft.eissn=2389-8976&rft_id=info:doi/10.15446/rce.v44n2.91356&rft_dat=%3Cproquest_cross%3E2593201650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2593201650&rft_id=info:pmid/&rfr_iscdi=true