A cascaded registration network RCINet with segmentation mask
Traditional deformable registration methods achieve brilliant results and show strong theoretical support but are computational intensive since they optimize each image pair’s objective function. Recently, supervised learning methods have facilitated fast registration. However, it requires ground tr...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-12, Vol.33 (23), p.16471-16487 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16487 |
---|---|
container_issue | 23 |
container_start_page | 16471 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Zou, Wenlan Luo, Yi Cao, Wenming He, Zhiquan He, Zhihai |
description | Traditional deformable registration methods achieve brilliant results and show strong theoretical support but are computational intensive since they optimize each image pair’s objective function. Recently, supervised learning methods have facilitated fast registration. However, it requires ground truth and does not guarantee a diffeomorphism registration. This paper proposes a new unsupervised learning method Recursive Cascaded Network with a segmentation mask, for two-dimensional medical image registration. Different from the original cascaded network, the network framework into two parts. The first section obtains a pair of image rolls and uses the registration sub-network to predict the deformation vector field from the moving image to the fixed image. The second part introduces anatomical segmentation into the network during training, makes full use of the auxiliary information of the volume, adds an autoencoder to encode the anatomical segmentation, and incorporates it into the learning process of the model in the form of constraints. The local and global ideas are combined to ensure the deformation field’s rationality and improve the distribution. The most important thing is that we propose a formula for calculating the cascaded network’s deformation field used in the test stage to evaluate the relationship between the registration accuracy and the deformation field’s effectiveness. Our experiments show that the system has a better registration effect and less information loss than the current state-of-the-art method. Simultaneously, the cascade method’s accuracy is an improvement at a certain number of layers, and the increase in accuracy needs to sacrifice the effectiveness of the deformation field. |
doi_str_mv | 10.1007/s00521-021-06243-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2592768803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592768803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-de4acfab1a1308c3659afb9ea746719396cb402e65c8598b5ee4bc617939d3813</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRMFa_gKeA5-jb7J_sHjyUoLVQFETPy2bzUtPapO5uKX57EyJ48zC8w_xmHgwh1xRuKUBxFwBETjMYJXPOMn1CEsoZyxgIdUoS0Hy0ODsnFyFsAIBLJRJyP0-dDc7WWKce122I3sa279IO47H32_S1XD5jTI9t_EgDrnfYxQnY2bC9JGeN_Qx49Xtn5P3x4a18ylYvi2U5X2WOUR2zGrl1ja2opQyUY1Jo21QabcFlQTXT0lUccpTCKaFVJRB55SQtBqtmirIZuZl6977_OmCIZtMffDe8NLnQeSGVAjZQ-UQ534fgsTF73-6s_zYUzDiTmWYyMGqcyeghxKZQGOBujf6v-p_UDzwBabw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592768803</pqid></control><display><type>article</type><title>A cascaded registration network RCINet with segmentation mask</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zou, Wenlan ; Luo, Yi ; Cao, Wenming ; He, Zhiquan ; He, Zhihai</creator><creatorcontrib>Zou, Wenlan ; Luo, Yi ; Cao, Wenming ; He, Zhiquan ; He, Zhihai</creatorcontrib><description>Traditional deformable registration methods achieve brilliant results and show strong theoretical support but are computational intensive since they optimize each image pair’s objective function. Recently, supervised learning methods have facilitated fast registration. However, it requires ground truth and does not guarantee a diffeomorphism registration. This paper proposes a new unsupervised learning method Recursive Cascaded Network with a segmentation mask, for two-dimensional medical image registration. Different from the original cascaded network, the network framework into two parts. The first section obtains a pair of image rolls and uses the registration sub-network to predict the deformation vector field from the moving image to the fixed image. The second part introduces anatomical segmentation into the network during training, makes full use of the auxiliary information of the volume, adds an autoencoder to encode the anatomical segmentation, and incorporates it into the learning process of the model in the form of constraints. The local and global ideas are combined to ensure the deformation field’s rationality and improve the distribution. The most important thing is that we propose a formula for calculating the cascaded network’s deformation field used in the test stage to evaluate the relationship between the registration accuracy and the deformation field’s effectiveness. Our experiments show that the system has a better registration effect and less information loss than the current state-of-the-art method. Simultaneously, the cascade method’s accuracy is an improvement at a certain number of layers, and the increase in accuracy needs to sacrifice the effectiveness of the deformation field.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06243-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Constraint modelling ; Data Mining and Knowledge Discovery ; Deformation effects ; Fields (mathematics) ; Formability ; Image Processing and Computer Vision ; Image registration ; Image segmentation ; Isomorphism ; Medical imaging ; Original Article ; Probability and Statistics in Computer Science ; Registration ; Supervised learning ; Teaching methods</subject><ispartof>Neural computing & applications, 2021-12, Vol.33 (23), p.16471-16487</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-de4acfab1a1308c3659afb9ea746719396cb402e65c8598b5ee4bc617939d3813</citedby><cites>FETCH-LOGICAL-c319t-de4acfab1a1308c3659afb9ea746719396cb402e65c8598b5ee4bc617939d3813</cites><orcidid>0000-0001-5182-5318 ; 0000-0002-8174-6167 ; 0000-0002-5488-4724</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06243-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06243-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zou, Wenlan</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Cao, Wenming</creatorcontrib><creatorcontrib>He, Zhiquan</creatorcontrib><creatorcontrib>He, Zhihai</creatorcontrib><title>A cascaded registration network RCINet with segmentation mask</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Traditional deformable registration methods achieve brilliant results and show strong theoretical support but are computational intensive since they optimize each image pair’s objective function. Recently, supervised learning methods have facilitated fast registration. However, it requires ground truth and does not guarantee a diffeomorphism registration. This paper proposes a new unsupervised learning method Recursive Cascaded Network with a segmentation mask, for two-dimensional medical image registration. Different from the original cascaded network, the network framework into two parts. The first section obtains a pair of image rolls and uses the registration sub-network to predict the deformation vector field from the moving image to the fixed image. The second part introduces anatomical segmentation into the network during training, makes full use of the auxiliary information of the volume, adds an autoencoder to encode the anatomical segmentation, and incorporates it into the learning process of the model in the form of constraints. The local and global ideas are combined to ensure the deformation field’s rationality and improve the distribution. The most important thing is that we propose a formula for calculating the cascaded network’s deformation field used in the test stage to evaluate the relationship between the registration accuracy and the deformation field’s effectiveness. Our experiments show that the system has a better registration effect and less information loss than the current state-of-the-art method. Simultaneously, the cascade method’s accuracy is an improvement at a certain number of layers, and the increase in accuracy needs to sacrifice the effectiveness of the deformation field.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Constraint modelling</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deformation effects</subject><subject>Fields (mathematics)</subject><subject>Formability</subject><subject>Image Processing and Computer Vision</subject><subject>Image registration</subject><subject>Image segmentation</subject><subject>Isomorphism</subject><subject>Medical imaging</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Registration</subject><subject>Supervised learning</subject><subject>Teaching methods</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9Lw0AUxBdRMFa_gKeA5-jb7J_sHjyUoLVQFETPy2bzUtPapO5uKX57EyJ48zC8w_xmHgwh1xRuKUBxFwBETjMYJXPOMn1CEsoZyxgIdUoS0Hy0ODsnFyFsAIBLJRJyP0-dDc7WWKce122I3sa279IO47H32_S1XD5jTI9t_EgDrnfYxQnY2bC9JGeN_Qx49Xtn5P3x4a18ylYvi2U5X2WOUR2zGrl1ja2opQyUY1Jo21QabcFlQTXT0lUccpTCKaFVJRB55SQtBqtmirIZuZl6977_OmCIZtMffDe8NLnQeSGVAjZQ-UQ534fgsTF73-6s_zYUzDiTmWYyMGqcyeghxKZQGOBujf6v-p_UDzwBabw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zou, Wenlan</creator><creator>Luo, Yi</creator><creator>Cao, Wenming</creator><creator>He, Zhiquan</creator><creator>He, Zhihai</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5182-5318</orcidid><orcidid>https://orcid.org/0000-0002-8174-6167</orcidid><orcidid>https://orcid.org/0000-0002-5488-4724</orcidid></search><sort><creationdate>20211201</creationdate><title>A cascaded registration network RCINet with segmentation mask</title><author>Zou, Wenlan ; Luo, Yi ; Cao, Wenming ; He, Zhiquan ; He, Zhihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-de4acfab1a1308c3659afb9ea746719396cb402e65c8598b5ee4bc617939d3813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Constraint modelling</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deformation effects</topic><topic>Fields (mathematics)</topic><topic>Formability</topic><topic>Image Processing and Computer Vision</topic><topic>Image registration</topic><topic>Image segmentation</topic><topic>Isomorphism</topic><topic>Medical imaging</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Registration</topic><topic>Supervised learning</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Wenlan</creatorcontrib><creatorcontrib>Luo, Yi</creatorcontrib><creatorcontrib>Cao, Wenming</creatorcontrib><creatorcontrib>He, Zhiquan</creatorcontrib><creatorcontrib>He, Zhihai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Wenlan</au><au>Luo, Yi</au><au>Cao, Wenming</au><au>He, Zhiquan</au><au>He, Zhihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cascaded registration network RCINet with segmentation mask</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>23</issue><spage>16471</spage><epage>16487</epage><pages>16471-16487</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Traditional deformable registration methods achieve brilliant results and show strong theoretical support but are computational intensive since they optimize each image pair’s objective function. Recently, supervised learning methods have facilitated fast registration. However, it requires ground truth and does not guarantee a diffeomorphism registration. This paper proposes a new unsupervised learning method Recursive Cascaded Network with a segmentation mask, for two-dimensional medical image registration. Different from the original cascaded network, the network framework into two parts. The first section obtains a pair of image rolls and uses the registration sub-network to predict the deformation vector field from the moving image to the fixed image. The second part introduces anatomical segmentation into the network during training, makes full use of the auxiliary information of the volume, adds an autoencoder to encode the anatomical segmentation, and incorporates it into the learning process of the model in the form of constraints. The local and global ideas are combined to ensure the deformation field’s rationality and improve the distribution. The most important thing is that we propose a formula for calculating the cascaded network’s deformation field used in the test stage to evaluate the relationship between the registration accuracy and the deformation field’s effectiveness. Our experiments show that the system has a better registration effect and less information loss than the current state-of-the-art method. Simultaneously, the cascade method’s accuracy is an improvement at a certain number of layers, and the increase in accuracy needs to sacrifice the effectiveness of the deformation field.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06243-9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5182-5318</orcidid><orcidid>https://orcid.org/0000-0002-8174-6167</orcidid><orcidid>https://orcid.org/0000-0002-5488-4724</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-12, Vol.33 (23), p.16471-16487 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2592768803 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Constraint modelling Data Mining and Knowledge Discovery Deformation effects Fields (mathematics) Formability Image Processing and Computer Vision Image registration Image segmentation Isomorphism Medical imaging Original Article Probability and Statistics in Computer Science Registration Supervised learning Teaching methods |
title | A cascaded registration network RCINet with segmentation mask |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A39%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cascaded%20registration%20network%20RCINet%20with%20segmentation%20mask&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Zou,%20Wenlan&rft.date=2021-12-01&rft.volume=33&rft.issue=23&rft.spage=16471&rft.epage=16487&rft.pages=16471-16487&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06243-9&rft_dat=%3Cproquest_cross%3E2592768803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592768803&rft_id=info:pmid/&rfr_iscdi=true |