A Style-Based Generator Architecture for Generative Adversarial Networks

We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2021-12, Vol.43 (12), p.4217-4228
Hauptverfasser: Karras, Tero, Laine, Samuli, Aila, Timo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4228
container_issue 12
container_start_page 4217
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 43
creator Karras, Tero
Laine, Samuli
Aila, Timo
description We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
doi_str_mv 10.1109/TPAMI.2020.2970919
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2592630570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8977347</ieee_id><sourcerecordid>2592630570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-b05ab333261449d125b90232eca4cb44fd4a83a1b554cbf47609302c5fcc88f03</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEgvHxB0BClbhw6XDipG2OZQKGxJcEnKM0dUWhWyFpQfv3dGxw4GTZfvzKehg75DDmHPTZ00N-ez0WIGAsdAqa6w024hp1jAr1JhsBT0ScZSLbYbshvAJwqQC32Q4K4AIARmyaR4_doqH43AYqoyuak7dd66Pcu5e6I9f1nqJqGKxX9SdFeflJPlhf2ya6o-6r9W9hn21Vtgl0sK577Pny4mkyjW_ur64n-U3sJE-7uABlC0QUCZdSl1yoQoNAQc5KV0hZldJmaHmh1NBXMk1AIwinKueyrALcY6er3HfffvQUOjOrg6OmsXNq-2AEKtAAmPABPfmHvra9nw_fGaG0SBBUugwUK8r5NgRPlXn39cz6heFglp7Nj2ez9GzWnoej43V0X8yo_Dv5FTsARyugJqK_dabTFGWK3zJZf8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592630570</pqid></control><display><type>article</type><title>A Style-Based Generator Architecture for Generative Adversarial Networks</title><source>IEEE Xplore</source><creator>Karras, Tero ; Laine, Samuli ; Aila, Timo</creator><creatorcontrib>Karras, Tero ; Laine, Samuli ; Aila, Timo</creatorcontrib><description>We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.2970919</identifier><identifier>PMID: 32012000</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aerospace electronics ; Convolution ; deep learning ; Generative adversarial networks ; Generative models ; Generators ; Image resolution ; Interpolation ; neural networks ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-12, Vol.43 (12), p.4217-4228</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-b05ab333261449d125b90232eca4cb44fd4a83a1b554cbf47609302c5fcc88f03</citedby><cites>FETCH-LOGICAL-c417t-b05ab333261449d125b90232eca4cb44fd4a83a1b554cbf47609302c5fcc88f03</cites><orcidid>0000-0002-9437-4438 ; 0000-0002-0903-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8977347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8977347$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32012000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karras, Tero</creatorcontrib><creatorcontrib>Laine, Samuli</creatorcontrib><creatorcontrib>Aila, Timo</creatorcontrib><title>A Style-Based Generator Architecture for Generative Adversarial Networks</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.</description><subject>Aerospace electronics</subject><subject>Convolution</subject><subject>deep learning</subject><subject>Generative adversarial networks</subject><subject>Generative models</subject><subject>Generators</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>neural networks</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhiMEgvHxB0BClbhw6XDipG2OZQKGxJcEnKM0dUWhWyFpQfv3dGxw4GTZfvzKehg75DDmHPTZ00N-ez0WIGAsdAqa6w024hp1jAr1JhsBT0ScZSLbYbshvAJwqQC32Q4K4AIARmyaR4_doqH43AYqoyuak7dd66Pcu5e6I9f1nqJqGKxX9SdFeflJPlhf2ya6o-6r9W9hn21Vtgl0sK577Pny4mkyjW_ur64n-U3sJE-7uABlC0QUCZdSl1yoQoNAQc5KV0hZldJmaHmh1NBXMk1AIwinKueyrALcY6er3HfffvQUOjOrg6OmsXNq-2AEKtAAmPABPfmHvra9nw_fGaG0SBBUugwUK8r5NgRPlXn39cz6heFglp7Nj2ez9GzWnoej43V0X8yo_Dv5FTsARyugJqK_dabTFGWK3zJZf8g</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Karras, Tero</creator><creator>Laine, Samuli</creator><creator>Aila, Timo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9437-4438</orcidid><orcidid>https://orcid.org/0000-0002-0903-3197</orcidid></search><sort><creationdate>20211201</creationdate><title>A Style-Based Generator Architecture for Generative Adversarial Networks</title><author>Karras, Tero ; Laine, Samuli ; Aila, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-b05ab333261449d125b90232eca4cb44fd4a83a1b554cbf47609302c5fcc88f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerospace electronics</topic><topic>Convolution</topic><topic>deep learning</topic><topic>Generative adversarial networks</topic><topic>Generative models</topic><topic>Generators</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karras, Tero</creatorcontrib><creatorcontrib>Laine, Samuli</creatorcontrib><creatorcontrib>Aila, Timo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karras, Tero</au><au>Laine, Samuli</au><au>Aila, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Style-Based Generator Architecture for Generative Adversarial Networks</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>43</volume><issue>12</issue><spage>4217</spage><epage>4228</epage><pages>4217-4228</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32012000</pmid><doi>10.1109/TPAMI.2020.2970919</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9437-4438</orcidid><orcidid>https://orcid.org/0000-0002-0903-3197</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2021-12, Vol.43 (12), p.4217-4228
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2592630570
source IEEE Xplore
subjects Aerospace electronics
Convolution
deep learning
Generative adversarial networks
Generative models
Generators
Image resolution
Interpolation
neural networks
Training
title A Style-Based Generator Architecture for Generative Adversarial Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Style-Based%20Generator%20Architecture%20for%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Karras,%20Tero&rft.date=2021-12-01&rft.volume=43&rft.issue=12&rft.spage=4217&rft.epage=4228&rft.pages=4217-4228&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.2970919&rft_dat=%3Cproquest_RIE%3E2592630570%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592630570&rft_id=info:pmid/32012000&rft_ieee_id=8977347&rfr_iscdi=true