Application of Sound-Conducting Polymeric Pellicle for Hydrophone Calibration by Means of Optical Interferometry

Hydrophone calibration is carried out via optical interferometry using a thin sound-transparent polymeric pellicle (membrane). A major issue associated with implementing this calibration method consists in estimating the correspondence between the oscillations of the metalized side of the pellicle a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement techniques 2021-08, Vol.64 (5), p.414-419
Hauptverfasser: Еnyakov, А. М., Kuznetsov, S. I., Lukin, G. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 419
container_issue 5
container_start_page 414
container_title Measurement techniques
container_volume 64
creator Еnyakov, А. М.
Kuznetsov, S. I.
Lukin, G. S.
description Hydrophone calibration is carried out via optical interferometry using a thin sound-transparent polymeric pellicle (membrane). A major issue associated with implementing this calibration method consists in estimating the correspondence between the oscillations of the metalized side of the pellicle and water particle displacements under the action of the acoustic wave incident on the pellicle. On the basis of a simplified theory of plane acoustic waves propagating through the layers of dissimilar materials, the authors developed methods for measuring the speed of sound through the applied pellicle together with an algorithm for calculating the frequency dependence of the acoustic wave transmission coefficient (in terms of particle velocity) from water, through the pellicle, and into water/air. An introduced correction of the hydrophone calibration results to take the acoustic wave transmission coefficient into account is justified along with its estimated uncertainty.
doi_str_mv 10.1007/s11018-021-01947-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2592338944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681124863</galeid><sourcerecordid>A681124863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-54ec69b420ec9ff0544d203a76f45980bfbd04220ad0ce697477a8e4c701b7993</originalsourceid><addsrcrecordid>eNp9kU-L1TAUxYso-Bz9Aq4Krlx0vPnTplk-Huo8GJnB0XVI05tnhr6kJinYb2-eFWQ2ksWF8DvnnsupqrcErgmA-JAIAdI3QEkDRHLRyGfVjrSCNb2E7nm1g5azhkhBX1avUnoEACY6uavm_TxPzujsgq-DrR_C4sfmEPy4mOz8qb4P03rG6Ex9j1MhJ6xtiPXNOsYw_wge64Oe3BA3h2Gtv6D26WJ1N-diPNVHnzFajOGMOa6vqxdWTwnf_J1X1fdPH78dbprbu8_Hw_62MYyz3LQcTScHTgGNtLbE5yMFpkVneSt7GOwwAqcU9AgGOym4ELpHbgSQQUjJrqp3m-8cw88FU1aPYYm-rFS0lZSxXnJeqOuNOukJlfM25KhNeSOenSnXWVf-911PCOV9x4rg_RNBYTL-yie9pKSOD1-fsnRjTQwpRbRqju6s46oIqEttaqtNldrUn9rUJTfbRKnA_oTxX-7_qH4DpSSaVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592338944</pqid></control><display><type>article</type><title>Application of Sound-Conducting Polymeric Pellicle for Hydrophone Calibration by Means of Optical Interferometry</title><source>SpringerNature Journals</source><creator>Еnyakov, А. М. ; Kuznetsov, S. I. ; Lukin, G. S.</creator><creatorcontrib>Еnyakov, А. М. ; Kuznetsov, S. I. ; Lukin, G. S.</creatorcontrib><description>Hydrophone calibration is carried out via optical interferometry using a thin sound-transparent polymeric pellicle (membrane). A major issue associated with implementing this calibration method consists in estimating the correspondence between the oscillations of the metalized side of the pellicle and water particle displacements under the action of the acoustic wave incident on the pellicle. On the basis of a simplified theory of plane acoustic waves propagating through the layers of dissimilar materials, the authors developed methods for measuring the speed of sound through the applied pellicle together with an algorithm for calculating the frequency dependence of the acoustic wave transmission coefficient (in terms of particle velocity) from water, through the pellicle, and into water/air. An introduced correction of the hydrophone calibration results to take the acoustic wave transmission coefficient into account is justified along with its estimated uncertainty.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-021-01947-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustic Measurements ; Acoustic propagation ; Acoustic properties ; Acoustic waves ; Acoustics ; Algorithms ; Analytical Chemistry ; Calibration ; Characterization and Evaluation of Materials ; Dissimilar materials ; Hydrophones ; Interferometry ; Measurement methods ; Measurement Science and Instrumentation ; Pellicle ; Physical Chemistry ; Physics ; Physics and Astronomy ; Sound ; Wave propagation</subject><ispartof>Measurement techniques, 2021-08, Vol.64 (5), p.414-419</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-54ec69b420ec9ff0544d203a76f45980bfbd04220ad0ce697477a8e4c701b7993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11018-021-01947-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11018-021-01947-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Еnyakov, А. М.</creatorcontrib><creatorcontrib>Kuznetsov, S. I.</creatorcontrib><creatorcontrib>Lukin, G. S.</creatorcontrib><title>Application of Sound-Conducting Polymeric Pellicle for Hydrophone Calibration by Means of Optical Interferometry</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>Hydrophone calibration is carried out via optical interferometry using a thin sound-transparent polymeric pellicle (membrane). A major issue associated with implementing this calibration method consists in estimating the correspondence between the oscillations of the metalized side of the pellicle and water particle displacements under the action of the acoustic wave incident on the pellicle. On the basis of a simplified theory of plane acoustic waves propagating through the layers of dissimilar materials, the authors developed methods for measuring the speed of sound through the applied pellicle together with an algorithm for calculating the frequency dependence of the acoustic wave transmission coefficient (in terms of particle velocity) from water, through the pellicle, and into water/air. An introduced correction of the hydrophone calibration results to take the acoustic wave transmission coefficient into account is justified along with its estimated uncertainty.</description><subject>Acoustic Measurements</subject><subject>Acoustic propagation</subject><subject>Acoustic properties</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Calibration</subject><subject>Characterization and Evaluation of Materials</subject><subject>Dissimilar materials</subject><subject>Hydrophones</subject><subject>Interferometry</subject><subject>Measurement methods</subject><subject>Measurement Science and Instrumentation</subject><subject>Pellicle</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sound</subject><subject>Wave propagation</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU-L1TAUxYso-Bz9Aq4Krlx0vPnTplk-Huo8GJnB0XVI05tnhr6kJinYb2-eFWQ2ksWF8DvnnsupqrcErgmA-JAIAdI3QEkDRHLRyGfVjrSCNb2E7nm1g5azhkhBX1avUnoEACY6uavm_TxPzujsgq-DrR_C4sfmEPy4mOz8qb4P03rG6Ex9j1MhJ6xtiPXNOsYw_wge64Oe3BA3h2Gtv6D26WJ1N-diPNVHnzFajOGMOa6vqxdWTwnf_J1X1fdPH78dbprbu8_Hw_62MYyz3LQcTScHTgGNtLbE5yMFpkVneSt7GOwwAqcU9AgGOym4ELpHbgSQQUjJrqp3m-8cw88FU1aPYYm-rFS0lZSxXnJeqOuNOukJlfM25KhNeSOenSnXWVf-911PCOV9x4rg_RNBYTL-yie9pKSOD1-fsnRjTQwpRbRqju6s46oIqEttaqtNldrUn9rUJTfbRKnA_oTxX-7_qH4DpSSaVw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Еnyakov, А. М.</creator><creator>Kuznetsov, S. I.</creator><creator>Lukin, G. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20210801</creationdate><title>Application of Sound-Conducting Polymeric Pellicle for Hydrophone Calibration by Means of Optical Interferometry</title><author>Еnyakov, А. М. ; Kuznetsov, S. I. ; Lukin, G. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-54ec69b420ec9ff0544d203a76f45980bfbd04220ad0ce697477a8e4c701b7993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic Measurements</topic><topic>Acoustic propagation</topic><topic>Acoustic properties</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Calibration</topic><topic>Characterization and Evaluation of Materials</topic><topic>Dissimilar materials</topic><topic>Hydrophones</topic><topic>Interferometry</topic><topic>Measurement methods</topic><topic>Measurement Science and Instrumentation</topic><topic>Pellicle</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sound</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Еnyakov, А. М.</creatorcontrib><creatorcontrib>Kuznetsov, S. I.</creatorcontrib><creatorcontrib>Lukin, G. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Еnyakov, А. М.</au><au>Kuznetsov, S. I.</au><au>Lukin, G. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Sound-Conducting Polymeric Pellicle for Hydrophone Calibration by Means of Optical Interferometry</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>64</volume><issue>5</issue><spage>414</spage><epage>419</epage><pages>414-419</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>Hydrophone calibration is carried out via optical interferometry using a thin sound-transparent polymeric pellicle (membrane). A major issue associated with implementing this calibration method consists in estimating the correspondence between the oscillations of the metalized side of the pellicle and water particle displacements under the action of the acoustic wave incident on the pellicle. On the basis of a simplified theory of plane acoustic waves propagating through the layers of dissimilar materials, the authors developed methods for measuring the speed of sound through the applied pellicle together with an algorithm for calculating the frequency dependence of the acoustic wave transmission coefficient (in terms of particle velocity) from water, through the pellicle, and into water/air. An introduced correction of the hydrophone calibration results to take the acoustic wave transmission coefficient into account is justified along with its estimated uncertainty.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-021-01947-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0543-1972
ispartof Measurement techniques, 2021-08, Vol.64 (5), p.414-419
issn 0543-1972
1573-8906
language eng
recordid cdi_proquest_journals_2592338944
source SpringerNature Journals
subjects Acoustic Measurements
Acoustic propagation
Acoustic properties
Acoustic waves
Acoustics
Algorithms
Analytical Chemistry
Calibration
Characterization and Evaluation of Materials
Dissimilar materials
Hydrophones
Interferometry
Measurement methods
Measurement Science and Instrumentation
Pellicle
Physical Chemistry
Physics
Physics and Astronomy
Sound
Wave propagation
title Application of Sound-Conducting Polymeric Pellicle for Hydrophone Calibration by Means of Optical Interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Sound-Conducting%20Polymeric%20Pellicle%20for%20Hydrophone%20Calibration%20by%20Means%20of%20Optical%20Interferometry&rft.jtitle=Measurement%20techniques&rft.au=%D0%95nyakov,%20%D0%90.%20%D0%9C.&rft.date=2021-08-01&rft.volume=64&rft.issue=5&rft.spage=414&rft.epage=419&rft.pages=414-419&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-021-01947-9&rft_dat=%3Cgale_proqu%3EA681124863%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592338944&rft_id=info:pmid/&rft_galeid=A681124863&rfr_iscdi=true