Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect

The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2021-12, Vol.235 (6), p.2129-2140
Hauptverfasser: Md Basir, Md Faisal, Mackolil, Joby, Mahanthesh, B, Nisar, Kottakkaran S, Muhammad, Taseer, Anuar, Nur Syazana, Bachok, Norfifah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2140
container_issue 6
container_start_page 2129
container_title Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering
container_volume 235
creator Md Basir, Md Faisal
Mackolil, Joby
Mahanthesh, B
Nisar, Kottakkaran S
Muhammad, Taseer
Anuar, Nur Syazana
Bachok, Norfifah
description The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equations by utilizing suitable scaling group transformations. Numerical solutions are obtained by employing the built-in function in the MATLAB software (bvp4c). Physically recoverable solutions are found employing stability analysis. The factor variables of interest (melting parameter, the nanoparticle volume fraction of cobalt and CeO2) are then further analyzed by utilizing the sensitivity analysis (based on the response surface methodology model) for heat transfer rate, as well as the skin friction coefficient. It is found that the heat transfer and skin friction tend to be significantly higher in a hybrid nanofluid due to the radiation and melting heat transfer. The lower branch is found to be unstable, whereas the upper branch is found to be stable. Also, the heat transfer rate and skin friction coefficient are found to be negatively sensitive toward the melting parameter. The model in this study can be applied for microscopic propulsion systems and the nano-electromechanical systems integrated with a nano-based system.
doi_str_mv 10.1177/09544089211033161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2592256838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544089211033161</sage_id><sourcerecordid>2592256838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-be200f7b1d25c4234fd0f7e66725bca29da602e889fd604045c47ebcef9320f93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZJ9vsoRa1Q8KCel9nspJuyzdYkRfbfm1LBgziH-WDe94EZxm4FLIQoy3uo8yyDqpZCQJqKQpyxmYRMJClAfc5mx31yFFyyK--3ECODcsbGt4CtGUyYONqO-4DB-GAUDnHGYfLG89HyHQ3B2A3vCQMPDq3X5LixHHk_tc503KId9XCI3ZcJPQ89uV2EOOxMREYEaU0qXLMLjYOnm586Zx9Pj-_LVbJ-fX5ZPqwTlQoZkpYkgC5b0clcZTLNdBdHKopS5q1CWXdYgKSqqnVXxEuyqCqpVaTrVEJMc3Z34u7d-HkgH5rteHDxIt_IvJYyL6q0iipxUik3eu9IN3tnduimRkBz_Gvz56_Rszh5PG7ol_q_4RsYInkh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592256838</pqid></control><display><type>article</type><title>Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect</title><source>SAGE Complete A-Z List</source><creator>Md Basir, Md Faisal ; Mackolil, Joby ; Mahanthesh, B ; Nisar, Kottakkaran S ; Muhammad, Taseer ; Anuar, Nur Syazana ; Bachok, Norfifah</creator><creatorcontrib>Md Basir, Md Faisal ; Mackolil, Joby ; Mahanthesh, B ; Nisar, Kottakkaran S ; Muhammad, Taseer ; Anuar, Nur Syazana ; Bachok, Norfifah</creatorcontrib><description>The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equations by utilizing suitable scaling group transformations. Numerical solutions are obtained by employing the built-in function in the MATLAB software (bvp4c). Physically recoverable solutions are found employing stability analysis. The factor variables of interest (melting parameter, the nanoparticle volume fraction of cobalt and CeO2) are then further analyzed by utilizing the sensitivity analysis (based on the response surface methodology model) for heat transfer rate, as well as the skin friction coefficient. It is found that the heat transfer and skin friction tend to be significantly higher in a hybrid nanofluid due to the radiation and melting heat transfer. The lower branch is found to be unstable, whereas the upper branch is found to be stable. Also, the heat transfer rate and skin friction coefficient are found to be negatively sensitive toward the melting parameter. The model in this study can be applied for microscopic propulsion systems and the nano-electromechanical systems integrated with a nano-based system.</description><identifier>ISSN: 0954-4089</identifier><identifier>EISSN: 2041-3009</identifier><identifier>DOI: 10.1177/09544089211033161</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cerium oxides ; Cobalt ; Coefficient of friction ; Differential thermal analysis ; Friction ; Heat transfer ; Mathematical models ; Melting ; Nanoelectromechanical systems ; Nanofluids ; Nanoparticles ; Nonlinear differential equations ; Ordinary differential equations ; Parameter sensitivity ; Partial differential equations ; Propulsion systems ; Radiation ; Response surface methodology ; Sensitivity analysis ; Skin friction ; Stability analysis ; Stagnation point ; Statistical analysis ; Thermal radiation</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2021-12, Vol.235 (6), p.2129-2140</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-be200f7b1d25c4234fd0f7e66725bca29da602e889fd604045c47ebcef9320f93</citedby><cites>FETCH-LOGICAL-c312t-be200f7b1d25c4234fd0f7e66725bca29da602e889fd604045c47ebcef9320f93</cites><orcidid>0000-0001-5769-4320 ; 0000-0003-2481-3842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544089211033161$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544089211033161$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Md Basir, Md Faisal</creatorcontrib><creatorcontrib>Mackolil, Joby</creatorcontrib><creatorcontrib>Mahanthesh, B</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><creatorcontrib>Anuar, Nur Syazana</creatorcontrib><creatorcontrib>Bachok, Norfifah</creatorcontrib><title>Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect</title><title>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</title><addtitle>Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</addtitle><description>The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equations by utilizing suitable scaling group transformations. Numerical solutions are obtained by employing the built-in function in the MATLAB software (bvp4c). Physically recoverable solutions are found employing stability analysis. The factor variables of interest (melting parameter, the nanoparticle volume fraction of cobalt and CeO2) are then further analyzed by utilizing the sensitivity analysis (based on the response surface methodology model) for heat transfer rate, as well as the skin friction coefficient. It is found that the heat transfer and skin friction tend to be significantly higher in a hybrid nanofluid due to the radiation and melting heat transfer. The lower branch is found to be unstable, whereas the upper branch is found to be stable. Also, the heat transfer rate and skin friction coefficient are found to be negatively sensitive toward the melting parameter. The model in this study can be applied for microscopic propulsion systems and the nano-electromechanical systems integrated with a nano-based system.</description><subject>Cerium oxides</subject><subject>Cobalt</subject><subject>Coefficient of friction</subject><subject>Differential thermal analysis</subject><subject>Friction</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Nanoelectromechanical systems</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear differential equations</subject><subject>Ordinary differential equations</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Propulsion systems</subject><subject>Radiation</subject><subject>Response surface methodology</subject><subject>Sensitivity analysis</subject><subject>Skin friction</subject><subject>Stability analysis</subject><subject>Stagnation point</subject><subject>Statistical analysis</subject><subject>Thermal radiation</subject><issn>0954-4089</issn><issn>2041-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZJ9vsoRa1Q8KCel9nspJuyzdYkRfbfm1LBgziH-WDe94EZxm4FLIQoy3uo8yyDqpZCQJqKQpyxmYRMJClAfc5mx31yFFyyK--3ECODcsbGt4CtGUyYONqO-4DB-GAUDnHGYfLG89HyHQ3B2A3vCQMPDq3X5LixHHk_tc503KId9XCI3ZcJPQ89uV2EOOxMREYEaU0qXLMLjYOnm586Zx9Pj-_LVbJ-fX5ZPqwTlQoZkpYkgC5b0clcZTLNdBdHKopS5q1CWXdYgKSqqnVXxEuyqCqpVaTrVEJMc3Z34u7d-HkgH5rteHDxIt_IvJYyL6q0iipxUik3eu9IN3tnduimRkBz_Gvz56_Rszh5PG7ol_q_4RsYInkh</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Md Basir, Md Faisal</creator><creator>Mackolil, Joby</creator><creator>Mahanthesh, B</creator><creator>Nisar, Kottakkaran S</creator><creator>Muhammad, Taseer</creator><creator>Anuar, Nur Syazana</creator><creator>Bachok, Norfifah</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0003-2481-3842</orcidid></search><sort><creationdate>202112</creationdate><title>Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect</title><author>Md Basir, Md Faisal ; Mackolil, Joby ; Mahanthesh, B ; Nisar, Kottakkaran S ; Muhammad, Taseer ; Anuar, Nur Syazana ; Bachok, Norfifah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-be200f7b1d25c4234fd0f7e66725bca29da602e889fd604045c47ebcef9320f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cerium oxides</topic><topic>Cobalt</topic><topic>Coefficient of friction</topic><topic>Differential thermal analysis</topic><topic>Friction</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Nanoelectromechanical systems</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear differential equations</topic><topic>Ordinary differential equations</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Propulsion systems</topic><topic>Radiation</topic><topic>Response surface methodology</topic><topic>Sensitivity analysis</topic><topic>Skin friction</topic><topic>Stability analysis</topic><topic>Stagnation point</topic><topic>Statistical analysis</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Md Basir, Md Faisal</creatorcontrib><creatorcontrib>Mackolil, Joby</creatorcontrib><creatorcontrib>Mahanthesh, B</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><creatorcontrib>Anuar, Nur Syazana</creatorcontrib><creatorcontrib>Bachok, Norfifah</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Md Basir, Md Faisal</au><au>Mackolil, Joby</au><au>Mahanthesh, B</au><au>Nisar, Kottakkaran S</au><au>Muhammad, Taseer</au><au>Anuar, Nur Syazana</au><au>Bachok, Norfifah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle><addtitle>Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</addtitle><date>2021-12</date><risdate>2021</risdate><volume>235</volume><issue>6</issue><spage>2129</spage><epage>2140</epage><pages>2129-2140</pages><issn>0954-4089</issn><eissn>2041-3009</eissn><abstract>The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equations by utilizing suitable scaling group transformations. Numerical solutions are obtained by employing the built-in function in the MATLAB software (bvp4c). Physically recoverable solutions are found employing stability analysis. The factor variables of interest (melting parameter, the nanoparticle volume fraction of cobalt and CeO2) are then further analyzed by utilizing the sensitivity analysis (based on the response surface methodology model) for heat transfer rate, as well as the skin friction coefficient. It is found that the heat transfer and skin friction tend to be significantly higher in a hybrid nanofluid due to the radiation and melting heat transfer. The lower branch is found to be unstable, whereas the upper branch is found to be stable. Also, the heat transfer rate and skin friction coefficient are found to be negatively sensitive toward the melting parameter. The model in this study can be applied for microscopic propulsion systems and the nano-electromechanical systems integrated with a nano-based system.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544089211033161</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0003-2481-3842</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4089
ispartof Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2021-12, Vol.235 (6), p.2129-2140
issn 0954-4089
2041-3009
language eng
recordid cdi_proquest_journals_2592256838
source SAGE Complete A-Z List
subjects Cerium oxides
Cobalt
Coefficient of friction
Differential thermal analysis
Friction
Heat transfer
Mathematical models
Melting
Nanoelectromechanical systems
Nanofluids
Nanoparticles
Nonlinear differential equations
Ordinary differential equations
Parameter sensitivity
Partial differential equations
Propulsion systems
Radiation
Response surface methodology
Sensitivity analysis
Skin friction
Stability analysis
Stagnation point
Statistical analysis
Thermal radiation
title Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20statistical%20analysis%20on%20melting%20heat%20transfer%20in%20a%20hybrid%20nanofluid%20with%20thermal%20radiation%20effect&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20E,%20Journal%20of%20process%20mechanical%20engineering&rft.au=Md%20Basir,%20Md%20Faisal&rft.date=2021-12&rft.volume=235&rft.issue=6&rft.spage=2129&rft.epage=2140&rft.pages=2129-2140&rft.issn=0954-4089&rft.eissn=2041-3009&rft_id=info:doi/10.1177/09544089211033161&rft_dat=%3Cproquest_cross%3E2592256838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592256838&rft_id=info:pmid/&rft_sage_id=10.1177_09544089211033161&rfr_iscdi=true