Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect
The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equati...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering Journal of process mechanical engineering, 2021-12, Vol.235 (6), p.2129-2140 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2140 |
---|---|
container_issue | 6 |
container_start_page | 2129 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering |
container_volume | 235 |
creator | Md Basir, Md Faisal Mackolil, Joby Mahanthesh, B Nisar, Kottakkaran S Muhammad, Taseer Anuar, Nur Syazana Bachok, Norfifah |
description | The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equations by utilizing suitable scaling group transformations. Numerical solutions are obtained by employing the built-in function in the MATLAB software (bvp4c). Physically recoverable solutions are found employing stability analysis. The factor variables of interest (melting parameter, the nanoparticle volume fraction of cobalt and CeO2) are then further analyzed by utilizing the sensitivity analysis (based on the response surface methodology model) for heat transfer rate, as well as the skin friction coefficient. It is found that the heat transfer and skin friction tend to be significantly higher in a hybrid nanofluid due to the radiation and melting heat transfer. The lower branch is found to be unstable, whereas the upper branch is found to be stable. Also, the heat transfer rate and skin friction coefficient are found to be negatively sensitive toward the melting parameter. The model in this study can be applied for microscopic propulsion systems and the nano-electromechanical systems integrated with a nano-based system. |
doi_str_mv | 10.1177/09544089211033161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2592256838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544089211033161</sage_id><sourcerecordid>2592256838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-be200f7b1d25c4234fd0f7e66725bca29da602e889fd604045c47ebcef9320f93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZJ9vsoRa1Q8KCel9nspJuyzdYkRfbfm1LBgziH-WDe94EZxm4FLIQoy3uo8yyDqpZCQJqKQpyxmYRMJClAfc5mx31yFFyyK--3ECODcsbGt4CtGUyYONqO-4DB-GAUDnHGYfLG89HyHQ3B2A3vCQMPDq3X5LixHHk_tc503KId9XCI3ZcJPQ89uV2EOOxMREYEaU0qXLMLjYOnm586Zx9Pj-_LVbJ-fX5ZPqwTlQoZkpYkgC5b0clcZTLNdBdHKopS5q1CWXdYgKSqqnVXxEuyqCqpVaTrVEJMc3Z34u7d-HkgH5rteHDxIt_IvJYyL6q0iipxUik3eu9IN3tnduimRkBz_Gvz56_Rszh5PG7ol_q_4RsYInkh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592256838</pqid></control><display><type>article</type><title>Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect</title><source>SAGE Complete A-Z List</source><creator>Md Basir, Md Faisal ; Mackolil, Joby ; Mahanthesh, B ; Nisar, Kottakkaran S ; Muhammad, Taseer ; Anuar, Nur Syazana ; Bachok, Norfifah</creator><creatorcontrib>Md Basir, Md Faisal ; Mackolil, Joby ; Mahanthesh, B ; Nisar, Kottakkaran S ; Muhammad, Taseer ; Anuar, Nur Syazana ; Bachok, Norfifah</creatorcontrib><description>The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equations by utilizing suitable scaling group transformations. Numerical solutions are obtained by employing the built-in function in the MATLAB software (bvp4c). Physically recoverable solutions are found employing stability analysis. The factor variables of interest (melting parameter, the nanoparticle volume fraction of cobalt and CeO2) are then further analyzed by utilizing the sensitivity analysis (based on the response surface methodology model) for heat transfer rate, as well as the skin friction coefficient. It is found that the heat transfer and skin friction tend to be significantly higher in a hybrid nanofluid due to the radiation and melting heat transfer. The lower branch is found to be unstable, whereas the upper branch is found to be stable. Also, the heat transfer rate and skin friction coefficient are found to be negatively sensitive toward the melting parameter. The model in this study can be applied for microscopic propulsion systems and the nano-electromechanical systems integrated with a nano-based system.</description><identifier>ISSN: 0954-4089</identifier><identifier>EISSN: 2041-3009</identifier><identifier>DOI: 10.1177/09544089211033161</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cerium oxides ; Cobalt ; Coefficient of friction ; Differential thermal analysis ; Friction ; Heat transfer ; Mathematical models ; Melting ; Nanoelectromechanical systems ; Nanofluids ; Nanoparticles ; Nonlinear differential equations ; Ordinary differential equations ; Parameter sensitivity ; Partial differential equations ; Propulsion systems ; Radiation ; Response surface methodology ; Sensitivity analysis ; Skin friction ; Stability analysis ; Stagnation point ; Statistical analysis ; Thermal radiation</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2021-12, Vol.235 (6), p.2129-2140</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-be200f7b1d25c4234fd0f7e66725bca29da602e889fd604045c47ebcef9320f93</citedby><cites>FETCH-LOGICAL-c312t-be200f7b1d25c4234fd0f7e66725bca29da602e889fd604045c47ebcef9320f93</cites><orcidid>0000-0001-5769-4320 ; 0000-0003-2481-3842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544089211033161$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544089211033161$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Md Basir, Md Faisal</creatorcontrib><creatorcontrib>Mackolil, Joby</creatorcontrib><creatorcontrib>Mahanthesh, B</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><creatorcontrib>Anuar, Nur Syazana</creatorcontrib><creatorcontrib>Bachok, Norfifah</creatorcontrib><title>Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect</title><title>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</title><addtitle>Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</addtitle><description>The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equations by utilizing suitable scaling group transformations. Numerical solutions are obtained by employing the built-in function in the MATLAB software (bvp4c). Physically recoverable solutions are found employing stability analysis. The factor variables of interest (melting parameter, the nanoparticle volume fraction of cobalt and CeO2) are then further analyzed by utilizing the sensitivity analysis (based on the response surface methodology model) for heat transfer rate, as well as the skin friction coefficient. It is found that the heat transfer and skin friction tend to be significantly higher in a hybrid nanofluid due to the radiation and melting heat transfer. The lower branch is found to be unstable, whereas the upper branch is found to be stable. Also, the heat transfer rate and skin friction coefficient are found to be negatively sensitive toward the melting parameter. The model in this study can be applied for microscopic propulsion systems and the nano-electromechanical systems integrated with a nano-based system.</description><subject>Cerium oxides</subject><subject>Cobalt</subject><subject>Coefficient of friction</subject><subject>Differential thermal analysis</subject><subject>Friction</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Melting</subject><subject>Nanoelectromechanical systems</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear differential equations</subject><subject>Ordinary differential equations</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Propulsion systems</subject><subject>Radiation</subject><subject>Response surface methodology</subject><subject>Sensitivity analysis</subject><subject>Skin friction</subject><subject>Stability analysis</subject><subject>Stagnation point</subject><subject>Statistical analysis</subject><subject>Thermal radiation</subject><issn>0954-4089</issn><issn>2041-3009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZJ9vsoRa1Q8KCel9nspJuyzdYkRfbfm1LBgziH-WDe94EZxm4FLIQoy3uo8yyDqpZCQJqKQpyxmYRMJClAfc5mx31yFFyyK--3ECODcsbGt4CtGUyYONqO-4DB-GAUDnHGYfLG89HyHQ3B2A3vCQMPDq3X5LixHHk_tc503KId9XCI3ZcJPQ89uV2EOOxMREYEaU0qXLMLjYOnm586Zx9Pj-_LVbJ-fX5ZPqwTlQoZkpYkgC5b0clcZTLNdBdHKopS5q1CWXdYgKSqqnVXxEuyqCqpVaTrVEJMc3Z34u7d-HkgH5rteHDxIt_IvJYyL6q0iipxUik3eu9IN3tnduimRkBz_Gvz56_Rszh5PG7ol_q_4RsYInkh</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Md Basir, Md Faisal</creator><creator>Mackolil, Joby</creator><creator>Mahanthesh, B</creator><creator>Nisar, Kottakkaran S</creator><creator>Muhammad, Taseer</creator><creator>Anuar, Nur Syazana</creator><creator>Bachok, Norfifah</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0003-2481-3842</orcidid></search><sort><creationdate>202112</creationdate><title>Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect</title><author>Md Basir, Md Faisal ; Mackolil, Joby ; Mahanthesh, B ; Nisar, Kottakkaran S ; Muhammad, Taseer ; Anuar, Nur Syazana ; Bachok, Norfifah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-be200f7b1d25c4234fd0f7e66725bca29da602e889fd604045c47ebcef9320f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cerium oxides</topic><topic>Cobalt</topic><topic>Coefficient of friction</topic><topic>Differential thermal analysis</topic><topic>Friction</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Melting</topic><topic>Nanoelectromechanical systems</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear differential equations</topic><topic>Ordinary differential equations</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Propulsion systems</topic><topic>Radiation</topic><topic>Response surface methodology</topic><topic>Sensitivity analysis</topic><topic>Skin friction</topic><topic>Stability analysis</topic><topic>Stagnation point</topic><topic>Statistical analysis</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Md Basir, Md Faisal</creatorcontrib><creatorcontrib>Mackolil, Joby</creatorcontrib><creatorcontrib>Mahanthesh, B</creatorcontrib><creatorcontrib>Nisar, Kottakkaran S</creatorcontrib><creatorcontrib>Muhammad, Taseer</creatorcontrib><creatorcontrib>Anuar, Nur Syazana</creatorcontrib><creatorcontrib>Bachok, Norfifah</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Md Basir, Md Faisal</au><au>Mackolil, Joby</au><au>Mahanthesh, B</au><au>Nisar, Kottakkaran S</au><au>Muhammad, Taseer</au><au>Anuar, Nur Syazana</au><au>Bachok, Norfifah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering</jtitle><addtitle>Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering</addtitle><date>2021-12</date><risdate>2021</risdate><volume>235</volume><issue>6</issue><spage>2129</spage><epage>2140</epage><pages>2129-2140</pages><issn>0954-4089</issn><eissn>2041-3009</eissn><abstract>The dual solutions for the stagnation point flow in a cobalt–CeO2/kerosene hybrid nanofluid with melting heat transfer and thermal radiation are analyzed. The partial differential equations are solved by the conversion of the partial differential equations into nonlinear ordinary differential equations by utilizing suitable scaling group transformations. Numerical solutions are obtained by employing the built-in function in the MATLAB software (bvp4c). Physically recoverable solutions are found employing stability analysis. The factor variables of interest (melting parameter, the nanoparticle volume fraction of cobalt and CeO2) are then further analyzed by utilizing the sensitivity analysis (based on the response surface methodology model) for heat transfer rate, as well as the skin friction coefficient. It is found that the heat transfer and skin friction tend to be significantly higher in a hybrid nanofluid due to the radiation and melting heat transfer. The lower branch is found to be unstable, whereas the upper branch is found to be stable. Also, the heat transfer rate and skin friction coefficient are found to be negatively sensitive toward the melting parameter. The model in this study can be applied for microscopic propulsion systems and the nano-electromechanical systems integrated with a nano-based system.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544089211033161</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid><orcidid>https://orcid.org/0000-0003-2481-3842</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4089 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part E, Journal of process mechanical engineering, 2021-12, Vol.235 (6), p.2129-2140 |
issn | 0954-4089 2041-3009 |
language | eng |
recordid | cdi_proquest_journals_2592256838 |
source | SAGE Complete A-Z List |
subjects | Cerium oxides Cobalt Coefficient of friction Differential thermal analysis Friction Heat transfer Mathematical models Melting Nanoelectromechanical systems Nanofluids Nanoparticles Nonlinear differential equations Ordinary differential equations Parameter sensitivity Partial differential equations Propulsion systems Radiation Response surface methodology Sensitivity analysis Skin friction Stability analysis Stagnation point Statistical analysis Thermal radiation |
title | Stability and statistical analysis on melting heat transfer in a hybrid nanofluid with thermal radiation effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20statistical%20analysis%20on%20melting%20heat%20transfer%20in%20a%20hybrid%20nanofluid%20with%20thermal%20radiation%20effect&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20E,%20Journal%20of%20process%20mechanical%20engineering&rft.au=Md%20Basir,%20Md%20Faisal&rft.date=2021-12&rft.volume=235&rft.issue=6&rft.spage=2129&rft.epage=2140&rft.pages=2129-2140&rft.issn=0954-4089&rft.eissn=2041-3009&rft_id=info:doi/10.1177/09544089211033161&rft_dat=%3Cproquest_cross%3E2592256838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592256838&rft_id=info:pmid/&rft_sage_id=10.1177_09544089211033161&rfr_iscdi=true |