Biharmonic hypersurfaces in a product space Lm×R
In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmo...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2021-09, Vol.294 (9), p.1724-1741 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1741 |
---|---|
container_issue | 9 |
container_start_page | 1724 |
container_title | Mathematische Nachrichten |
container_volume | 294 |
creator | Fu, Yu Maeta, Shun Ou, Ye‐Lin |
description | In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmonic equation for hypersurfaces in Sm×R and Hm×R in terms of the angle function of the hypersurface, and use it to obtain some classifications of biharmonic hypersurfaces in such spaces. These include classifications of biharmonic hypersurfaces which are totally umbilical or semi‐parallel for m≥3, and some classifications of biharmonic surfaces in S2×R and H2×R which are constant angle or belong to certain classes of rotation surfaces. |
doi_str_mv | 10.1002/mana.201900457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591367970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591367970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2987-ddda662ffac6184302e15bf980866625631f0f954a04602a201b0bb922793f1c3</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoWEe3rgOuO96kTdos6-AfVAVRcBfSNGE6TH9MpkifxAfyxcxQ0aWrC4fvnHs4CJ0TWBIAetmqTi0pEAGQsuwARYRRGlNO-CGKAsBilqdvx-jE-w0ACJHxCJGrZq1c23eNxutpMM6PziptPG46rPDg-nrUO-yHoOGy_fp8PkVHVm29Ofu5C_R6c_2yuovLp9v7VVHGmoo8i-u6VpxTG8I4ydMEqCGssiKHnAed8YRYsIKlClIOVIXiFVSVoDQTiSU6WaCLOTd0eB-N38lNP7ouvJSUCZLwTGQQqOVMadd774yVg2ta5SZJQO5nkftZ5O8swSBmw0ezNdM_tHwoHos_7zfRwGUP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591367970</pqid></control><display><type>article</type><title>Biharmonic hypersurfaces in a product space Lm×R</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fu, Yu ; Maeta, Shun ; Ou, Ye‐Lin</creator><creatorcontrib>Fu, Yu ; Maeta, Shun ; Ou, Ye‐Lin</creatorcontrib><description>In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmonic equation for hypersurfaces in Sm×R and Hm×R in terms of the angle function of the hypersurface, and use it to obtain some classifications of biharmonic hypersurfaces in such spaces. These include classifications of biharmonic hypersurfaces which are totally umbilical or semi‐parallel for m≥3, and some classifications of biharmonic surfaces in S2×R and H2×R which are constant angle or belong to certain classes of rotation surfaces.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201900457</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>angle function ; Biharmonic equations ; biharmonic hypersurfaces ; Hyperspaces ; product spaces ; rotation hypersurfaces ; totally umbilical hypersurfaces ; Vertical cylinders</subject><ispartof>Mathematische Nachrichten, 2021-09, Vol.294 (9), p.1724-1741</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2987-ddda662ffac6184302e15bf980866625631f0f954a04602a201b0bb922793f1c3</citedby><cites>FETCH-LOGICAL-c2987-ddda662ffac6184302e15bf980866625631f0f954a04602a201b0bb922793f1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201900457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201900457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Maeta, Shun</creatorcontrib><creatorcontrib>Ou, Ye‐Lin</creatorcontrib><title>Biharmonic hypersurfaces in a product space Lm×R</title><title>Mathematische Nachrichten</title><description>In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmonic equation for hypersurfaces in Sm×R and Hm×R in terms of the angle function of the hypersurface, and use it to obtain some classifications of biharmonic hypersurfaces in such spaces. These include classifications of biharmonic hypersurfaces which are totally umbilical or semi‐parallel for m≥3, and some classifications of biharmonic surfaces in S2×R and H2×R which are constant angle or belong to certain classes of rotation surfaces.</description><subject>angle function</subject><subject>Biharmonic equations</subject><subject>biharmonic hypersurfaces</subject><subject>Hyperspaces</subject><subject>product spaces</subject><subject>rotation hypersurfaces</subject><subject>totally umbilical hypersurfaces</subject><subject>Vertical cylinders</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoWEe3rgOuO96kTdos6-AfVAVRcBfSNGE6TH9MpkifxAfyxcxQ0aWrC4fvnHs4CJ0TWBIAetmqTi0pEAGQsuwARYRRGlNO-CGKAsBilqdvx-jE-w0ACJHxCJGrZq1c23eNxutpMM6PziptPG46rPDg-nrUO-yHoOGy_fp8PkVHVm29Ofu5C_R6c_2yuovLp9v7VVHGmoo8i-u6VpxTG8I4ydMEqCGssiKHnAed8YRYsIKlClIOVIXiFVSVoDQTiSU6WaCLOTd0eB-N38lNP7ouvJSUCZLwTGQQqOVMadd774yVg2ta5SZJQO5nkftZ5O8swSBmw0ezNdM_tHwoHos_7zfRwGUP</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Fu, Yu</creator><creator>Maeta, Shun</creator><creator>Ou, Ye‐Lin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Biharmonic hypersurfaces in a product space Lm×R</title><author>Fu, Yu ; Maeta, Shun ; Ou, Ye‐Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2987-ddda662ffac6184302e15bf980866625631f0f954a04602a201b0bb922793f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>angle function</topic><topic>Biharmonic equations</topic><topic>biharmonic hypersurfaces</topic><topic>Hyperspaces</topic><topic>product spaces</topic><topic>rotation hypersurfaces</topic><topic>totally umbilical hypersurfaces</topic><topic>Vertical cylinders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Maeta, Shun</creatorcontrib><creatorcontrib>Ou, Ye‐Lin</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yu</au><au>Maeta, Shun</au><au>Ou, Ye‐Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biharmonic hypersurfaces in a product space Lm×R</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2021-09</date><risdate>2021</risdate><volume>294</volume><issue>9</issue><spage>1724</spage><epage>1741</epage><pages>1724-1741</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmonic equation for hypersurfaces in Sm×R and Hm×R in terms of the angle function of the hypersurface, and use it to obtain some classifications of biharmonic hypersurfaces in such spaces. These include classifications of biharmonic hypersurfaces which are totally umbilical or semi‐parallel for m≥3, and some classifications of biharmonic surfaces in S2×R and H2×R which are constant angle or belong to certain classes of rotation surfaces.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201900457</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2021-09, Vol.294 (9), p.1724-1741 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2591367970 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | angle function Biharmonic equations biharmonic hypersurfaces Hyperspaces product spaces rotation hypersurfaces totally umbilical hypersurfaces Vertical cylinders |
title | Biharmonic hypersurfaces in a product space Lm×R |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biharmonic%20hypersurfaces%20in%20a%20product%20space%20Lm%C3%97R&rft.jtitle=Mathematische%20Nachrichten&rft.au=Fu,%20Yu&rft.date=2021-09&rft.volume=294&rft.issue=9&rft.spage=1724&rft.epage=1741&rft.pages=1724-1741&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201900457&rft_dat=%3Cproquest_cross%3E2591367970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591367970&rft_id=info:pmid/&rfr_iscdi=true |