Biharmonic hypersurfaces in a product space Lm×R

In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2021-09, Vol.294 (9), p.1724-1741
Hauptverfasser: Fu, Yu, Maeta, Shun, Ou, Ye‐Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1741
container_issue 9
container_start_page 1724
container_title Mathematische Nachrichten
container_volume 294
creator Fu, Yu
Maeta, Shun
Ou, Ye‐Lin
description In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmonic equation for hypersurfaces in Sm×R and Hm×R in terms of the angle function of the hypersurface, and use it to obtain some classifications of biharmonic hypersurfaces in such spaces. These include classifications of biharmonic hypersurfaces which are totally umbilical or semi‐parallel for m≥3, and some classifications of biharmonic surfaces in S2×R and H2×R which are constant angle or belong to certain classes of rotation surfaces.
doi_str_mv 10.1002/mana.201900457
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591367970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591367970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2987-ddda662ffac6184302e15bf980866625631f0f954a04602a201b0bb922793f1c3</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoWEe3rgOuO96kTdos6-AfVAVRcBfSNGE6TH9MpkifxAfyxcxQ0aWrC4fvnHs4CJ0TWBIAetmqTi0pEAGQsuwARYRRGlNO-CGKAsBilqdvx-jE-w0ACJHxCJGrZq1c23eNxutpMM6PziptPG46rPDg-nrUO-yHoOGy_fp8PkVHVm29Ofu5C_R6c_2yuovLp9v7VVHGmoo8i-u6VpxTG8I4ydMEqCGssiKHnAed8YRYsIKlClIOVIXiFVSVoDQTiSU6WaCLOTd0eB-N38lNP7ouvJSUCZLwTGQQqOVMadd774yVg2ta5SZJQO5nkftZ5O8swSBmw0ezNdM_tHwoHos_7zfRwGUP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591367970</pqid></control><display><type>article</type><title>Biharmonic hypersurfaces in a product space Lm×R</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fu, Yu ; Maeta, Shun ; Ou, Ye‐Lin</creator><creatorcontrib>Fu, Yu ; Maeta, Shun ; Ou, Ye‐Lin</creatorcontrib><description>In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmonic equation for hypersurfaces in Sm×R and Hm×R in terms of the angle function of the hypersurface, and use it to obtain some classifications of biharmonic hypersurfaces in such spaces. These include classifications of biharmonic hypersurfaces which are totally umbilical or semi‐parallel for m≥3, and some classifications of biharmonic surfaces in S2×R and H2×R which are constant angle or belong to certain classes of rotation surfaces.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201900457</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>angle function ; Biharmonic equations ; biharmonic hypersurfaces ; Hyperspaces ; product spaces ; rotation hypersurfaces ; totally umbilical hypersurfaces ; Vertical cylinders</subject><ispartof>Mathematische Nachrichten, 2021-09, Vol.294 (9), p.1724-1741</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2987-ddda662ffac6184302e15bf980866625631f0f954a04602a201b0bb922793f1c3</citedby><cites>FETCH-LOGICAL-c2987-ddda662ffac6184302e15bf980866625631f0f954a04602a201b0bb922793f1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201900457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201900457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Maeta, Shun</creatorcontrib><creatorcontrib>Ou, Ye‐Lin</creatorcontrib><title>Biharmonic hypersurfaces in a product space Lm×R</title><title>Mathematische Nachrichten</title><description>In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmonic equation for hypersurfaces in Sm×R and Hm×R in terms of the angle function of the hypersurface, and use it to obtain some classifications of biharmonic hypersurfaces in such spaces. These include classifications of biharmonic hypersurfaces which are totally umbilical or semi‐parallel for m≥3, and some classifications of biharmonic surfaces in S2×R and H2×R which are constant angle or belong to certain classes of rotation surfaces.</description><subject>angle function</subject><subject>Biharmonic equations</subject><subject>biharmonic hypersurfaces</subject><subject>Hyperspaces</subject><subject>product spaces</subject><subject>rotation hypersurfaces</subject><subject>totally umbilical hypersurfaces</subject><subject>Vertical cylinders</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoWEe3rgOuO96kTdos6-AfVAVRcBfSNGE6TH9MpkifxAfyxcxQ0aWrC4fvnHs4CJ0TWBIAetmqTi0pEAGQsuwARYRRGlNO-CGKAsBilqdvx-jE-w0ACJHxCJGrZq1c23eNxutpMM6PziptPG46rPDg-nrUO-yHoOGy_fp8PkVHVm29Ofu5C_R6c_2yuovLp9v7VVHGmoo8i-u6VpxTG8I4ydMEqCGssiKHnAed8YRYsIKlClIOVIXiFVSVoDQTiSU6WaCLOTd0eB-N38lNP7ouvJSUCZLwTGQQqOVMadd774yVg2ta5SZJQO5nkftZ5O8swSBmw0ezNdM_tHwoHos_7zfRwGUP</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Fu, Yu</creator><creator>Maeta, Shun</creator><creator>Ou, Ye‐Lin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Biharmonic hypersurfaces in a product space Lm×R</title><author>Fu, Yu ; Maeta, Shun ; Ou, Ye‐Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2987-ddda662ffac6184302e15bf980866625631f0f954a04602a201b0bb922793f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>angle function</topic><topic>Biharmonic equations</topic><topic>biharmonic hypersurfaces</topic><topic>Hyperspaces</topic><topic>product spaces</topic><topic>rotation hypersurfaces</topic><topic>totally umbilical hypersurfaces</topic><topic>Vertical cylinders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Maeta, Shun</creatorcontrib><creatorcontrib>Ou, Ye‐Lin</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yu</au><au>Maeta, Shun</au><au>Ou, Ye‐Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biharmonic hypersurfaces in a product space Lm×R</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2021-09</date><risdate>2021</risdate><volume>294</volume><issue>9</issue><spage>1724</spage><epage>1741</epage><pages>1724-1741</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>In this paper, we study biharmonic hypersurfaces in a product Lm×R of an Einstein space Lm and a real line R. We prove that a biharmonic hypersurface with constant mean curvature in such a product is either minimal or a vertical cylinder generalizing a result of [36] and [17]. We derived the biharmonic equation for hypersurfaces in Sm×R and Hm×R in terms of the angle function of the hypersurface, and use it to obtain some classifications of biharmonic hypersurfaces in such spaces. These include classifications of biharmonic hypersurfaces which are totally umbilical or semi‐parallel for m≥3, and some classifications of biharmonic surfaces in S2×R and H2×R which are constant angle or belong to certain classes of rotation surfaces.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201900457</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2021-09, Vol.294 (9), p.1724-1741
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2591367970
source Wiley Online Library Journals Frontfile Complete
subjects angle function
Biharmonic equations
biharmonic hypersurfaces
Hyperspaces
product spaces
rotation hypersurfaces
totally umbilical hypersurfaces
Vertical cylinders
title Biharmonic hypersurfaces in a product space Lm×R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biharmonic%20hypersurfaces%20in%20a%20product%20space%20Lm%C3%97R&rft.jtitle=Mathematische%20Nachrichten&rft.au=Fu,%20Yu&rft.date=2021-09&rft.volume=294&rft.issue=9&rft.spage=1724&rft.epage=1741&rft.pages=1724-1741&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201900457&rft_dat=%3Cproquest_cross%3E2591367970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591367970&rft_id=info:pmid/&rfr_iscdi=true