Exploring a best vegetation index to explain the seasonal variation of a forest photosynthesis using a hyper-spectral camera equipped with liquid crystal tunable filter

Liquid crystal tunable filter (LCTF) can change the transmissible wavelength by changing the applied voltage to the filter, which enables the drastic increase in the observable wavelength resolution in a small size system and is considered to be a powerful tool for the spectral earth observation fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Agricultural Meteorology 2021, Vol.77(4), pp.253-261
Hauptverfasser: YOSHIKAWA, Kei, TAKAGI, Kentaro, YAZAKI, Tomotsugu, HIRANO, Takashi, HAYAKASHI, Shintaro, IDE, Reiko, OGUMA, Hiroyuki, HIROSE, Yasuo, KURIHARA, Junichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 4
container_start_page 253
container_title Journal of Agricultural Meteorology
container_volume 77
creator YOSHIKAWA, Kei
TAKAGI, Kentaro
YAZAKI, Tomotsugu
HIRANO, Takashi
HAYAKASHI, Shintaro
IDE, Reiko
OGUMA, Hiroyuki
HIROSE, Yasuo
KURIHARA, Junichi
description Liquid crystal tunable filter (LCTF) can change the transmissible wavelength by changing the applied voltage to the filter, which enables the drastic increase in the observable wavelength resolution in a small size system and is considered to be a powerful tool for the spectral earth observation from flying units or microsatellites. However, there is limited knowledge about its season-long application for the vegetation monitoring and the prediction of the ecosystem photosynthetic capacity. We compared the seasonal variation of spectral reflectance obtained by a LCTF camera with that obtained by a popular spectral radiometer in a cool-temperate young larch plantation in northern Hokkaido, Japan. Then we tried to find the best normalized difference spectral index (NDSI) to explain the seasonal variation of the ecosystem photosynthetic capacity using all pairs of two reflectances observed in the range of wavelength between 500 and 770 nm with 10-nm intervals (28 wavelength bands) by the LCTF. The best NDSI among all combinations (28×27) of two reflectances was NDSI[770, 720] for the maximum gross primary production at light saturation and NDSI[530, 600] for the initial slope of the light-response curve, which reflect the red edge shift owing to the change in the chlorophyll content and relative strength of the light absorbance in the visible red wavelength region compared with that in the green wavelength region, respectively. Predicted daily gross primary production of the plantation using these NDSI agreed well with the observed values. NDSI[530, 600] was better to distinguish each vegetation type of the studied plantation.
doi_str_mv 10.2480/agrmet.D-21-00005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591364009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591364009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-e9cb21c2873e192b5f162db2e4491c0f8b61234d9b5be437c603011fa9a534073</originalsourceid><addsrcrecordid>eNpFkU1u2zAQRomiBeK6OUB2BLJWyj9Z0rKIXbdAgGzaNUFRI4uGLMpDyrFv1GOWjpqUCxIDvjfAN0PIHWcPQpXsq9nhAeLDOhM8Y-nkH8iCl2UquFx9JAvG0keZl-UN-RzCnjEp85wtyJ_Neew9umFHDa0hRHqCHUQTnR-oGxo40-gpJMi4gcYOaAAT_GB6ejLoZs63SW49XvWx89GHy5DQ4AKdwty6u4yAWRjBRkyuNQdAQ-E4uXGEhr642NHepbKhFi8hJiZOg6l7oK3rI-AX8qk1fYDbf--S_P6--fX4I3t63v58_PaUWaVEzKCyteBWlIUEXok6b_lKNLUApSpuWVvWKy6kaqo6r0HJwq6YZJy3pjK5VKyQS3I_9x3RH6eUSO_9hClv0CKv0jAVY1Wi-ExZ9CEgtHpEdzB40Zzp60L0vBC91oLr14UkZzs7-xRvB--GwehsD29GUWh1vf6b74TtDGoY5F_-3Z2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591364009</pqid></control><display><type>article</type><title>Exploring a best vegetation index to explain the seasonal variation of a forest photosynthesis using a hyper-spectral camera equipped with liquid crystal tunable filter</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>YOSHIKAWA, Kei ; TAKAGI, Kentaro ; YAZAKI, Tomotsugu ; HIRANO, Takashi ; HAYAKASHI, Shintaro ; IDE, Reiko ; OGUMA, Hiroyuki ; HIROSE, Yasuo ; KURIHARA, Junichi</creator><creatorcontrib>YOSHIKAWA, Kei ; TAKAGI, Kentaro ; YAZAKI, Tomotsugu ; HIRANO, Takashi ; HAYAKASHI, Shintaro ; IDE, Reiko ; OGUMA, Hiroyuki ; HIROSE, Yasuo ; KURIHARA, Junichi</creatorcontrib><description>Liquid crystal tunable filter (LCTF) can change the transmissible wavelength by changing the applied voltage to the filter, which enables the drastic increase in the observable wavelength resolution in a small size system and is considered to be a powerful tool for the spectral earth observation from flying units or microsatellites. However, there is limited knowledge about its season-long application for the vegetation monitoring and the prediction of the ecosystem photosynthetic capacity. We compared the seasonal variation of spectral reflectance obtained by a LCTF camera with that obtained by a popular spectral radiometer in a cool-temperate young larch plantation in northern Hokkaido, Japan. Then we tried to find the best normalized difference spectral index (NDSI) to explain the seasonal variation of the ecosystem photosynthetic capacity using all pairs of two reflectances observed in the range of wavelength between 500 and 770 nm with 10-nm intervals (28 wavelength bands) by the LCTF. The best NDSI among all combinations (28×27) of two reflectances was NDSI[770, 720] for the maximum gross primary production at light saturation and NDSI[530, 600] for the initial slope of the light-response curve, which reflect the red edge shift owing to the change in the chlorophyll content and relative strength of the light absorbance in the visible red wavelength region compared with that in the green wavelength region, respectively. Predicted daily gross primary production of the plantation using these NDSI agreed well with the observed values. NDSI[530, 600] was better to distinguish each vegetation type of the studied plantation.</description><identifier>ISSN: 0021-8588</identifier><identifier>EISSN: 1881-0136</identifier><identifier>DOI: 10.2480/agrmet.D-21-00005</identifier><language>eng</language><publisher>Tokyo: The Society of Agricultural Meteorology of Japan</publisher><subject>Agriculture ; Birch ; Cameras ; Chlorophyll ; Chlorophylls ; Flight ; Gross primary production ; Larch plantation ; Light ; Liquid crystals ; Microsatellites ; Normalized difference spectral index ; Photosynthesis ; Plantations ; Primary production ; Radiometers ; Reflectance ; Sasa ; Saturation ; Seasonal variation ; Seasonal variations ; Seasons ; Spectra ; Spectral reflectance ; Spectroradiometers ; Tunable filters ; Vegetation ; Vegetation index ; Vegetation type ; Wavelength</subject><ispartof>Journal of Agricultural Meteorology, 2021, Vol.77(4), pp.253-261</ispartof><rights>2021 The Society of Agricultural Meteorology of Japan</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c442t-e9cb21c2873e192b5f162db2e4491c0f8b61234d9b5be437c603011fa9a534073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>YOSHIKAWA, Kei</creatorcontrib><creatorcontrib>TAKAGI, Kentaro</creatorcontrib><creatorcontrib>YAZAKI, Tomotsugu</creatorcontrib><creatorcontrib>HIRANO, Takashi</creatorcontrib><creatorcontrib>HAYAKASHI, Shintaro</creatorcontrib><creatorcontrib>IDE, Reiko</creatorcontrib><creatorcontrib>OGUMA, Hiroyuki</creatorcontrib><creatorcontrib>HIROSE, Yasuo</creatorcontrib><creatorcontrib>KURIHARA, Junichi</creatorcontrib><title>Exploring a best vegetation index to explain the seasonal variation of a forest photosynthesis using a hyper-spectral camera equipped with liquid crystal tunable filter</title><title>Journal of Agricultural Meteorology</title><addtitle>J. Agric. Meteorol.</addtitle><description>Liquid crystal tunable filter (LCTF) can change the transmissible wavelength by changing the applied voltage to the filter, which enables the drastic increase in the observable wavelength resolution in a small size system and is considered to be a powerful tool for the spectral earth observation from flying units or microsatellites. However, there is limited knowledge about its season-long application for the vegetation monitoring and the prediction of the ecosystem photosynthetic capacity. We compared the seasonal variation of spectral reflectance obtained by a LCTF camera with that obtained by a popular spectral radiometer in a cool-temperate young larch plantation in northern Hokkaido, Japan. Then we tried to find the best normalized difference spectral index (NDSI) to explain the seasonal variation of the ecosystem photosynthetic capacity using all pairs of two reflectances observed in the range of wavelength between 500 and 770 nm with 10-nm intervals (28 wavelength bands) by the LCTF. The best NDSI among all combinations (28×27) of two reflectances was NDSI[770, 720] for the maximum gross primary production at light saturation and NDSI[530, 600] for the initial slope of the light-response curve, which reflect the red edge shift owing to the change in the chlorophyll content and relative strength of the light absorbance in the visible red wavelength region compared with that in the green wavelength region, respectively. Predicted daily gross primary production of the plantation using these NDSI agreed well with the observed values. NDSI[530, 600] was better to distinguish each vegetation type of the studied plantation.</description><subject>Agriculture</subject><subject>Birch</subject><subject>Cameras</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Flight</subject><subject>Gross primary production</subject><subject>Larch plantation</subject><subject>Light</subject><subject>Liquid crystals</subject><subject>Microsatellites</subject><subject>Normalized difference spectral index</subject><subject>Photosynthesis</subject><subject>Plantations</subject><subject>Primary production</subject><subject>Radiometers</subject><subject>Reflectance</subject><subject>Sasa</subject><subject>Saturation</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Spectra</subject><subject>Spectral reflectance</subject><subject>Spectroradiometers</subject><subject>Tunable filters</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Vegetation type</subject><subject>Wavelength</subject><issn>0021-8588</issn><issn>1881-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkU1u2zAQRomiBeK6OUB2BLJWyj9Z0rKIXbdAgGzaNUFRI4uGLMpDyrFv1GOWjpqUCxIDvjfAN0PIHWcPQpXsq9nhAeLDOhM8Y-nkH8iCl2UquFx9JAvG0keZl-UN-RzCnjEp85wtyJ_Neew9umFHDa0hRHqCHUQTnR-oGxo40-gpJMi4gcYOaAAT_GB6ejLoZs63SW49XvWx89GHy5DQ4AKdwty6u4yAWRjBRkyuNQdAQ-E4uXGEhr642NHepbKhFi8hJiZOg6l7oK3rI-AX8qk1fYDbf--S_P6--fX4I3t63v58_PaUWaVEzKCyteBWlIUEXok6b_lKNLUApSpuWVvWKy6kaqo6r0HJwq6YZJy3pjK5VKyQS3I_9x3RH6eUSO_9hClv0CKv0jAVY1Wi-ExZ9CEgtHpEdzB40Zzp60L0vBC91oLr14UkZzs7-xRvB--GwehsD29GUWh1vf6b74TtDGoY5F_-3Z2w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>YOSHIKAWA, Kei</creator><creator>TAKAGI, Kentaro</creator><creator>YAZAKI, Tomotsugu</creator><creator>HIRANO, Takashi</creator><creator>HAYAKASHI, Shintaro</creator><creator>IDE, Reiko</creator><creator>OGUMA, Hiroyuki</creator><creator>HIROSE, Yasuo</creator><creator>KURIHARA, Junichi</creator><general>The Society of Agricultural Meteorology of Japan</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>2021</creationdate><title>Exploring a best vegetation index to explain the seasonal variation of a forest photosynthesis using a hyper-spectral camera equipped with liquid crystal tunable filter</title><author>YOSHIKAWA, Kei ; TAKAGI, Kentaro ; YAZAKI, Tomotsugu ; HIRANO, Takashi ; HAYAKASHI, Shintaro ; IDE, Reiko ; OGUMA, Hiroyuki ; HIROSE, Yasuo ; KURIHARA, Junichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-e9cb21c2873e192b5f162db2e4491c0f8b61234d9b5be437c603011fa9a534073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Birch</topic><topic>Cameras</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Flight</topic><topic>Gross primary production</topic><topic>Larch plantation</topic><topic>Light</topic><topic>Liquid crystals</topic><topic>Microsatellites</topic><topic>Normalized difference spectral index</topic><topic>Photosynthesis</topic><topic>Plantations</topic><topic>Primary production</topic><topic>Radiometers</topic><topic>Reflectance</topic><topic>Sasa</topic><topic>Saturation</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Spectra</topic><topic>Spectral reflectance</topic><topic>Spectroradiometers</topic><topic>Tunable filters</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Vegetation type</topic><topic>Wavelength</topic><toplevel>online_resources</toplevel><creatorcontrib>YOSHIKAWA, Kei</creatorcontrib><creatorcontrib>TAKAGI, Kentaro</creatorcontrib><creatorcontrib>YAZAKI, Tomotsugu</creatorcontrib><creatorcontrib>HIRANO, Takashi</creatorcontrib><creatorcontrib>HAYAKASHI, Shintaro</creatorcontrib><creatorcontrib>IDE, Reiko</creatorcontrib><creatorcontrib>OGUMA, Hiroyuki</creatorcontrib><creatorcontrib>HIROSE, Yasuo</creatorcontrib><creatorcontrib>KURIHARA, Junichi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Agricultural Meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YOSHIKAWA, Kei</au><au>TAKAGI, Kentaro</au><au>YAZAKI, Tomotsugu</au><au>HIRANO, Takashi</au><au>HAYAKASHI, Shintaro</au><au>IDE, Reiko</au><au>OGUMA, Hiroyuki</au><au>HIROSE, Yasuo</au><au>KURIHARA, Junichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring a best vegetation index to explain the seasonal variation of a forest photosynthesis using a hyper-spectral camera equipped with liquid crystal tunable filter</atitle><jtitle>Journal of Agricultural Meteorology</jtitle><addtitle>J. Agric. Meteorol.</addtitle><date>2021</date><risdate>2021</risdate><volume>77</volume><issue>4</issue><spage>253</spage><epage>261</epage><pages>253-261</pages><artnum>D-21-00005</artnum><issn>0021-8588</issn><eissn>1881-0136</eissn><abstract>Liquid crystal tunable filter (LCTF) can change the transmissible wavelength by changing the applied voltage to the filter, which enables the drastic increase in the observable wavelength resolution in a small size system and is considered to be a powerful tool for the spectral earth observation from flying units or microsatellites. However, there is limited knowledge about its season-long application for the vegetation monitoring and the prediction of the ecosystem photosynthetic capacity. We compared the seasonal variation of spectral reflectance obtained by a LCTF camera with that obtained by a popular spectral radiometer in a cool-temperate young larch plantation in northern Hokkaido, Japan. Then we tried to find the best normalized difference spectral index (NDSI) to explain the seasonal variation of the ecosystem photosynthetic capacity using all pairs of two reflectances observed in the range of wavelength between 500 and 770 nm with 10-nm intervals (28 wavelength bands) by the LCTF. The best NDSI among all combinations (28×27) of two reflectances was NDSI[770, 720] for the maximum gross primary production at light saturation and NDSI[530, 600] for the initial slope of the light-response curve, which reflect the red edge shift owing to the change in the chlorophyll content and relative strength of the light absorbance in the visible red wavelength region compared with that in the green wavelength region, respectively. Predicted daily gross primary production of the plantation using these NDSI agreed well with the observed values. NDSI[530, 600] was better to distinguish each vegetation type of the studied plantation.</abstract><cop>Tokyo</cop><pub>The Society of Agricultural Meteorology of Japan</pub><doi>10.2480/agrmet.D-21-00005</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8588
ispartof Journal of Agricultural Meteorology, 2021, Vol.77(4), pp.253-261
issn 0021-8588
1881-0136
language eng
recordid cdi_proquest_journals_2591364009
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agriculture
Birch
Cameras
Chlorophyll
Chlorophylls
Flight
Gross primary production
Larch plantation
Light
Liquid crystals
Microsatellites
Normalized difference spectral index
Photosynthesis
Plantations
Primary production
Radiometers
Reflectance
Sasa
Saturation
Seasonal variation
Seasonal variations
Seasons
Spectra
Spectral reflectance
Spectroradiometers
Tunable filters
Vegetation
Vegetation index
Vegetation type
Wavelength
title Exploring a best vegetation index to explain the seasonal variation of a forest photosynthesis using a hyper-spectral camera equipped with liquid crystal tunable filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20a%20best%20vegetation%20index%20to%20explain%20the%20seasonal%20variation%20of%20a%20forest%20photosynthesis%20using%20a%20hyper-spectral%20camera%20equipped%20with%20liquid%20crystal%20tunable%20filter&rft.jtitle=Journal%20of%20Agricultural%20Meteorology&rft.au=YOSHIKAWA,%20Kei&rft.date=2021&rft.volume=77&rft.issue=4&rft.spage=253&rft.epage=261&rft.pages=253-261&rft.artnum=D-21-00005&rft.issn=0021-8588&rft.eissn=1881-0136&rft_id=info:doi/10.2480/agrmet.D-21-00005&rft_dat=%3Cproquest_cross%3E2591364009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591364009&rft_id=info:pmid/&rfr_iscdi=true