A prediction model for borehole instability of ultra-deep fractured reservoir based on fracture and temperature effect

The traditional prediction method of wellbore instability in fractured formation cannot effectively solve the problem of surrounding rock collapse in ultra-deep fractured reservoir. This paper focuses on the coupling effect of complex geological conditions such as high stress, high temperature, frac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2021-10, Vol.861 (6), p.62074
Hauptverfasser: Chen, Junhai, Ren, Jie, Lu, Yunhu, Chen, Mian, Ju, Yingtong, Huang, Shengchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 62074
container_title IOP conference series. Earth and environmental science
container_volume 861
creator Chen, Junhai
Ren, Jie
Lu, Yunhu
Chen, Mian
Ju, Yingtong
Huang, Shengchao
description The traditional prediction method of wellbore instability in fractured formation cannot effectively solve the problem of surrounding rock collapse in ultra-deep fractured reservoir. This paper focuses on the coupling effect of complex geological conditions such as high stress, high temperature, fractured formation and drilling fluid. It establishes the induced stress field expression based on the heat exchange effect between drilling fluid and wellbore surrounding rock, and synthesizes the superposition effect of temperature and fracture. The strength failure criterion of wellbore surrounding rock in fractured formation is optimized, and the mechanical model of wellbore instability in fractured reservoir is established based on mechanical-thermal-chemical coupling model. The results show that as drilling fluid density increases, the stability of wellbore surrounding rock in ultra-deep fractured reservoir initially increases and then decreases. In other words, excessive drilling fluid density will aggravate wellbore collapse. In addition, the decrease in the temperature of the surrounding rock of the wellbore caused by the circulation of drilling fluid also leads to the increment in the degree of wellbore collapse. Based on these findings, reasonable drilling fluid density and properties can be optimized, and the instability problem of an ultra-deep fractured reservoir in Northwest China can be alleviated.
doi_str_mv 10.1088/1755-1315/861/6/062074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591360662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591360662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2694-a7cf12811916f320f0bf64734fa32d569f1e12017961bb5ee4b8c2cc7e63cd5f3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYsouK5-BQl48VKbSdqkPS7L-gcED-o5pOkEu3SbmnQX9tvbWl0RBE8zw7z3ZvhF0SXQG6B5noDMshg4ZEkuIBEJFYzK9CiaHRbHh57K0-gshDWlQqa8mEW7Bek8VrXpa9eSjauwIdZ5UjqPb65BUreh12Xd1P2eOEu2Te91XCF2xHpt-u1gJh4D-p2rB5sOwzwkfS-JbivS46ZDrz9ntBZNfx6dWN0EvPiq8-j1dvWyvI8fn-4elovH2DBRpLGWxgLLAQoQljNqaWlFKnlqNWdVJgoLCIyCLASUZYaYlrlhxkgU3FSZ5fPoasrtvHvfYujV2m19O5xULCuACyoEG1RiUhnvQvBoVefrjfZ7BVSNjNWIT40o1cBYCTUxHozXk7F23U_yavX8S6a6avyE_SH9J_8DxJ-MkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591360662</pqid></control><display><type>article</type><title>A prediction model for borehole instability of ultra-deep fractured reservoir based on fracture and temperature effect</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Chen, Junhai ; Ren, Jie ; Lu, Yunhu ; Chen, Mian ; Ju, Yingtong ; Huang, Shengchao</creator><creatorcontrib>Chen, Junhai ; Ren, Jie ; Lu, Yunhu ; Chen, Mian ; Ju, Yingtong ; Huang, Shengchao</creatorcontrib><description>The traditional prediction method of wellbore instability in fractured formation cannot effectively solve the problem of surrounding rock collapse in ultra-deep fractured reservoir. This paper focuses on the coupling effect of complex geological conditions such as high stress, high temperature, fractured formation and drilling fluid. It establishes the induced stress field expression based on the heat exchange effect between drilling fluid and wellbore surrounding rock, and synthesizes the superposition effect of temperature and fracture. The strength failure criterion of wellbore surrounding rock in fractured formation is optimized, and the mechanical model of wellbore instability in fractured reservoir is established based on mechanical-thermal-chemical coupling model. The results show that as drilling fluid density increases, the stability of wellbore surrounding rock in ultra-deep fractured reservoir initially increases and then decreases. In other words, excessive drilling fluid density will aggravate wellbore collapse. In addition, the decrease in the temperature of the surrounding rock of the wellbore caused by the circulation of drilling fluid also leads to the increment in the degree of wellbore collapse. Based on these findings, reasonable drilling fluid density and properties can be optimized, and the instability problem of an ultra-deep fractured reservoir in Northwest China can be alleviated.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/861/6/062074</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boreholes ; Collapse ; Coupling ; Density ; Drilling ; Drilling fluids ; Fractured reservoirs ; Heat exchange ; Heat transfer ; High temperature ; Instability ; Mechanical properties ; Prediction models ; Reservoirs ; Rocks ; Stability ; Stress distribution ; Temperature effects</subject><ispartof>IOP conference series. Earth and environmental science, 2021-10, Vol.861 (6), p.62074</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2694-a7cf12811916f320f0bf64734fa32d569f1e12017961bb5ee4b8c2cc7e63cd5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/861/6/062074/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,778,782,27907,27908,38851,38873,53823,53850</link.rule.ids></links><search><creatorcontrib>Chen, Junhai</creatorcontrib><creatorcontrib>Ren, Jie</creatorcontrib><creatorcontrib>Lu, Yunhu</creatorcontrib><creatorcontrib>Chen, Mian</creatorcontrib><creatorcontrib>Ju, Yingtong</creatorcontrib><creatorcontrib>Huang, Shengchao</creatorcontrib><title>A prediction model for borehole instability of ultra-deep fractured reservoir based on fracture and temperature effect</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>The traditional prediction method of wellbore instability in fractured formation cannot effectively solve the problem of surrounding rock collapse in ultra-deep fractured reservoir. This paper focuses on the coupling effect of complex geological conditions such as high stress, high temperature, fractured formation and drilling fluid. It establishes the induced stress field expression based on the heat exchange effect between drilling fluid and wellbore surrounding rock, and synthesizes the superposition effect of temperature and fracture. The strength failure criterion of wellbore surrounding rock in fractured formation is optimized, and the mechanical model of wellbore instability in fractured reservoir is established based on mechanical-thermal-chemical coupling model. The results show that as drilling fluid density increases, the stability of wellbore surrounding rock in ultra-deep fractured reservoir initially increases and then decreases. In other words, excessive drilling fluid density will aggravate wellbore collapse. In addition, the decrease in the temperature of the surrounding rock of the wellbore caused by the circulation of drilling fluid also leads to the increment in the degree of wellbore collapse. Based on these findings, reasonable drilling fluid density and properties can be optimized, and the instability problem of an ultra-deep fractured reservoir in Northwest China can be alleviated.</description><subject>Boreholes</subject><subject>Collapse</subject><subject>Coupling</subject><subject>Density</subject><subject>Drilling</subject><subject>Drilling fluids</subject><subject>Fractured reservoirs</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Instability</subject><subject>Mechanical properties</subject><subject>Prediction models</subject><subject>Reservoirs</subject><subject>Rocks</subject><subject>Stability</subject><subject>Stress distribution</subject><subject>Temperature effects</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE9LxDAQxYsouK5-BQl48VKbSdqkPS7L-gcED-o5pOkEu3SbmnQX9tvbWl0RBE8zw7z3ZvhF0SXQG6B5noDMshg4ZEkuIBEJFYzK9CiaHRbHh57K0-gshDWlQqa8mEW7Bek8VrXpa9eSjauwIdZ5UjqPb65BUreh12Xd1P2eOEu2Te91XCF2xHpt-u1gJh4D-p2rB5sOwzwkfS-JbivS46ZDrz9ntBZNfx6dWN0EvPiq8-j1dvWyvI8fn-4elovH2DBRpLGWxgLLAQoQljNqaWlFKnlqNWdVJgoLCIyCLASUZYaYlrlhxkgU3FSZ5fPoasrtvHvfYujV2m19O5xULCuACyoEG1RiUhnvQvBoVefrjfZ7BVSNjNWIT40o1cBYCTUxHozXk7F23U_yavX8S6a6avyE_SH9J_8DxJ-MkQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chen, Junhai</creator><creator>Ren, Jie</creator><creator>Lu, Yunhu</creator><creator>Chen, Mian</creator><creator>Ju, Yingtong</creator><creator>Huang, Shengchao</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20211001</creationdate><title>A prediction model for borehole instability of ultra-deep fractured reservoir based on fracture and temperature effect</title><author>Chen, Junhai ; Ren, Jie ; Lu, Yunhu ; Chen, Mian ; Ju, Yingtong ; Huang, Shengchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2694-a7cf12811916f320f0bf64734fa32d569f1e12017961bb5ee4b8c2cc7e63cd5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boreholes</topic><topic>Collapse</topic><topic>Coupling</topic><topic>Density</topic><topic>Drilling</topic><topic>Drilling fluids</topic><topic>Fractured reservoirs</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Instability</topic><topic>Mechanical properties</topic><topic>Prediction models</topic><topic>Reservoirs</topic><topic>Rocks</topic><topic>Stability</topic><topic>Stress distribution</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junhai</creatorcontrib><creatorcontrib>Ren, Jie</creatorcontrib><creatorcontrib>Lu, Yunhu</creatorcontrib><creatorcontrib>Chen, Mian</creatorcontrib><creatorcontrib>Ju, Yingtong</creatorcontrib><creatorcontrib>Huang, Shengchao</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junhai</au><au>Ren, Jie</au><au>Lu, Yunhu</au><au>Chen, Mian</au><au>Ju, Yingtong</au><au>Huang, Shengchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prediction model for borehole instability of ultra-deep fractured reservoir based on fracture and temperature effect</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>861</volume><issue>6</issue><spage>62074</spage><pages>62074-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>The traditional prediction method of wellbore instability in fractured formation cannot effectively solve the problem of surrounding rock collapse in ultra-deep fractured reservoir. This paper focuses on the coupling effect of complex geological conditions such as high stress, high temperature, fractured formation and drilling fluid. It establishes the induced stress field expression based on the heat exchange effect between drilling fluid and wellbore surrounding rock, and synthesizes the superposition effect of temperature and fracture. The strength failure criterion of wellbore surrounding rock in fractured formation is optimized, and the mechanical model of wellbore instability in fractured reservoir is established based on mechanical-thermal-chemical coupling model. The results show that as drilling fluid density increases, the stability of wellbore surrounding rock in ultra-deep fractured reservoir initially increases and then decreases. In other words, excessive drilling fluid density will aggravate wellbore collapse. In addition, the decrease in the temperature of the surrounding rock of the wellbore caused by the circulation of drilling fluid also leads to the increment in the degree of wellbore collapse. Based on these findings, reasonable drilling fluid density and properties can be optimized, and the instability problem of an ultra-deep fractured reservoir in Northwest China can be alleviated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/861/6/062074</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2021-10, Vol.861 (6), p.62074
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2591360662
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Boreholes
Collapse
Coupling
Density
Drilling
Drilling fluids
Fractured reservoirs
Heat exchange
Heat transfer
High temperature
Instability
Mechanical properties
Prediction models
Reservoirs
Rocks
Stability
Stress distribution
Temperature effects
title A prediction model for borehole instability of ultra-deep fractured reservoir based on fracture and temperature effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prediction%20model%20for%20borehole%20instability%20of%20ultra-deep%20fractured%20reservoir%20based%20on%20fracture%20and%20temperature%20effect&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Chen,%20Junhai&rft.date=2021-10-01&rft.volume=861&rft.issue=6&rft.spage=62074&rft.pages=62074-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/861/6/062074&rft_dat=%3Cproquest_cross%3E2591360662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591360662&rft_id=info:pmid/&rfr_iscdi=true