Scaling of Supercomputer Calculations on Unstructured Surface Computational Meshes

When solving complex problems of numerical modeling, computational meshes, containing hundreds millions of cells are quite often. Modern tasks even cross the line of billion cells. Workstations are unable to cope with such volume of data and computation. To perform computations of this volume we nee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2021-11, Vol.42 (11), p.2571-2579
Hauptverfasser: Shabanov, B. M., Rybakov, A. A., Shumilin, S. S., Vorobyov, M. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2579
container_issue 11
container_start_page 2571
container_title Lobachevskii journal of mathematics
container_volume 42
creator Shabanov, B. M.
Rybakov, A. A.
Shumilin, S. S.
Vorobyov, M. Yu
description When solving complex problems of numerical modeling, computational meshes, containing hundreds millions of cells are quite often. Modern tasks even cross the line of billion cells. Workstations are unable to cope with such volume of data and computation. To perform computations of this volume we need to use supercomputer clusters consisting of many computational nodes interconnected by a high-speed communication network. In this case, it is necessary to perform the decomposition of the computational mesh into separate domains in order to ensure its parallel processing on all nodes of the cluster. These domains are distributed among the computational nodes of the supercomputer and are processed independently of each other. To efficiently perform calculations and scale them to a large number of computational nodes, it is necessary to develop efficient algorithms for decomposition of computational meshes that generate many domains with imposed requirements. We consider an hierarchical decomposition algorithm with the choice of the optimal criterion for dividing mesh into domains. As such a mesh we study an unstructured surface mesh used to calculate the processes of interaction of a volumetric body with the environment. Using this decomposition algorithm, supercomputer calculations are performed on the computing resources of JSCC RAS in order to measure the practical indicators of scalability of highly loaded applications.
doi_str_mv 10.1134/S1995080221110202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591323047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591323047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-a026c5f93cc1e8ff235dd0295d464a50b54b029b8461310423d32a62eb8891a23</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Fz9XMpI3JUYr_YEWw7rmkabLu0m1q0hz89mZ3BQ_iaWZ4v_cYHiGXQK8BWHFTg5QlFRQRAChSPCIzECByKTkepz3J-U4_JWchbGgCOecz8lZr1a-HVeZsVsfReO22Y5yMzyrV69irae2GkLkhWw5h8lFP0Zsuod4qbbJqT-8h1WcvJnyYcE5OrOqDufiZc7J8uH-vnvLF6-NzdbfINXIx5Yoi16WVTGswwlpkZddRlGVX8EKVtC2LNp2tKDgwoAWyjqHiaFohJChkc3J1yB29-4wmTM3GRZ_-CA2WEhgyWtwmCg6U9i4Eb2wz-vVW-a8GaLOrrvlTXfLgwRMSO6yM_03-3_QNCJ5vmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591323047</pqid></control><display><type>article</type><title>Scaling of Supercomputer Calculations on Unstructured Surface Computational Meshes</title><source>SpringerLink Journals</source><creator>Shabanov, B. M. ; Rybakov, A. A. ; Shumilin, S. S. ; Vorobyov, M. Yu</creator><creatorcontrib>Shabanov, B. M. ; Rybakov, A. A. ; Shumilin, S. S. ; Vorobyov, M. Yu</creatorcontrib><description>When solving complex problems of numerical modeling, computational meshes, containing hundreds millions of cells are quite often. Modern tasks even cross the line of billion cells. Workstations are unable to cope with such volume of data and computation. To perform computations of this volume we need to use supercomputer clusters consisting of many computational nodes interconnected by a high-speed communication network. In this case, it is necessary to perform the decomposition of the computational mesh into separate domains in order to ensure its parallel processing on all nodes of the cluster. These domains are distributed among the computational nodes of the supercomputer and are processed independently of each other. To efficiently perform calculations and scale them to a large number of computational nodes, it is necessary to develop efficient algorithms for decomposition of computational meshes that generate many domains with imposed requirements. We consider an hierarchical decomposition algorithm with the choice of the optimal criterion for dividing mesh into domains. As such a mesh we study an unstructured surface mesh used to calculate the processes of interaction of a volumetric body with the environment. Using this decomposition algorithm, supercomputer calculations are performed on the computing resources of JSCC RAS in order to measure the practical indicators of scalability of highly loaded applications.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080221110202</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Algorithms ; Analysis ; Computational grids ; Computer graphics ; Decomposition ; Domains ; Finite element method ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Nodes ; Parallel processing ; Probability Theory and Stochastic Processes ; Supercomputers ; Workstations</subject><ispartof>Lobachevskii journal of mathematics, 2021-11, Vol.42 (11), p.2571-2579</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-a026c5f93cc1e8ff235dd0295d464a50b54b029b8461310423d32a62eb8891a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080221110202$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080221110202$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shabanov, B. M.</creatorcontrib><creatorcontrib>Rybakov, A. A.</creatorcontrib><creatorcontrib>Shumilin, S. S.</creatorcontrib><creatorcontrib>Vorobyov, M. Yu</creatorcontrib><title>Scaling of Supercomputer Calculations on Unstructured Surface Computational Meshes</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>When solving complex problems of numerical modeling, computational meshes, containing hundreds millions of cells are quite often. Modern tasks even cross the line of billion cells. Workstations are unable to cope with such volume of data and computation. To perform computations of this volume we need to use supercomputer clusters consisting of many computational nodes interconnected by a high-speed communication network. In this case, it is necessary to perform the decomposition of the computational mesh into separate domains in order to ensure its parallel processing on all nodes of the cluster. These domains are distributed among the computational nodes of the supercomputer and are processed independently of each other. To efficiently perform calculations and scale them to a large number of computational nodes, it is necessary to develop efficient algorithms for decomposition of computational meshes that generate many domains with imposed requirements. We consider an hierarchical decomposition algorithm with the choice of the optimal criterion for dividing mesh into domains. As such a mesh we study an unstructured surface mesh used to calculate the processes of interaction of a volumetric body with the environment. Using this decomposition algorithm, supercomputer calculations are performed on the computing resources of JSCC RAS in order to measure the practical indicators of scalability of highly loaded applications.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Computational grids</subject><subject>Computer graphics</subject><subject>Decomposition</subject><subject>Domains</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nodes</subject><subject>Parallel processing</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Supercomputers</subject><subject>Workstations</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Fz9XMpI3JUYr_YEWw7rmkabLu0m1q0hz89mZ3BQ_iaWZ4v_cYHiGXQK8BWHFTg5QlFRQRAChSPCIzECByKTkepz3J-U4_JWchbGgCOecz8lZr1a-HVeZsVsfReO22Y5yMzyrV69irae2GkLkhWw5h8lFP0Zsuod4qbbJqT-8h1WcvJnyYcE5OrOqDufiZc7J8uH-vnvLF6-NzdbfINXIx5Yoi16WVTGswwlpkZddRlGVX8EKVtC2LNp2tKDgwoAWyjqHiaFohJChkc3J1yB29-4wmTM3GRZ_-CA2WEhgyWtwmCg6U9i4Eb2wz-vVW-a8GaLOrrvlTXfLgwRMSO6yM_03-3_QNCJ5vmg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Shabanov, B. M.</creator><creator>Rybakov, A. A.</creator><creator>Shumilin, S. S.</creator><creator>Vorobyov, M. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Scaling of Supercomputer Calculations on Unstructured Surface Computational Meshes</title><author>Shabanov, B. M. ; Rybakov, A. A. ; Shumilin, S. S. ; Vorobyov, M. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-a026c5f93cc1e8ff235dd0295d464a50b54b029b8461310423d32a62eb8891a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Computational grids</topic><topic>Computer graphics</topic><topic>Decomposition</topic><topic>Domains</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nodes</topic><topic>Parallel processing</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Supercomputers</topic><topic>Workstations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shabanov, B. M.</creatorcontrib><creatorcontrib>Rybakov, A. A.</creatorcontrib><creatorcontrib>Shumilin, S. S.</creatorcontrib><creatorcontrib>Vorobyov, M. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shabanov, B. M.</au><au>Rybakov, A. A.</au><au>Shumilin, S. S.</au><au>Vorobyov, M. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling of Supercomputer Calculations on Unstructured Surface Computational Meshes</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>42</volume><issue>11</issue><spage>2571</spage><epage>2579</epage><pages>2571-2579</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>When solving complex problems of numerical modeling, computational meshes, containing hundreds millions of cells are quite often. Modern tasks even cross the line of billion cells. Workstations are unable to cope with such volume of data and computation. To perform computations of this volume we need to use supercomputer clusters consisting of many computational nodes interconnected by a high-speed communication network. In this case, it is necessary to perform the decomposition of the computational mesh into separate domains in order to ensure its parallel processing on all nodes of the cluster. These domains are distributed among the computational nodes of the supercomputer and are processed independently of each other. To efficiently perform calculations and scale them to a large number of computational nodes, it is necessary to develop efficient algorithms for decomposition of computational meshes that generate many domains with imposed requirements. We consider an hierarchical decomposition algorithm with the choice of the optimal criterion for dividing mesh into domains. As such a mesh we study an unstructured surface mesh used to calculate the processes of interaction of a volumetric body with the environment. Using this decomposition algorithm, supercomputer calculations are performed on the computing resources of JSCC RAS in order to measure the practical indicators of scalability of highly loaded applications.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080221110202</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2021-11, Vol.42 (11), p.2571-2579
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2591323047
source SpringerLink Journals
subjects Algebra
Algorithms
Analysis
Computational grids
Computer graphics
Decomposition
Domains
Finite element method
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Nodes
Parallel processing
Probability Theory and Stochastic Processes
Supercomputers
Workstations
title Scaling of Supercomputer Calculations on Unstructured Surface Computational Meshes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20of%20Supercomputer%20Calculations%20on%20Unstructured%20Surface%20Computational%20Meshes&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Shabanov,%20B.%20M.&rft.date=2021-11-01&rft.volume=42&rft.issue=11&rft.spage=2571&rft.epage=2579&rft.pages=2571-2579&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080221110202&rft_dat=%3Cproquest_cross%3E2591323047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591323047&rft_id=info:pmid/&rfr_iscdi=true