Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation
Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the sh...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2021-11, Vol.42 (11), p.2503-2509 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2509 |
---|---|
container_issue | 11 |
container_start_page | 2503 |
container_title | Lobachevskii journal of mathematics |
container_volume | 42 |
creator | Bagrov, A. D. Rybakov, A. A. |
description | Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the shallow-water icing model (SWIM), the problem of solving nonlinear equations with one variable plays a central role in numerical simulation. Since this problem occupies the overwhelming majority of calculations time, the question of choosing the optimal method for solving nonlinear equations and optimizing these methods becomes especially acute. This article describes the analysis of the use of various methods for solving nonlinear equations in the implementation of the SWIM solver, taking into account the features of the equations being solved, which led to a significant acceleration of the computational codes when performing calculations on JSCC RAS supercomputers. |
doi_str_mv | 10.1134/S1995080221110068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591323044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591323044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-568137851bdd224d037d490e31cda1e0ff906746509121edf0eac5117135df983</originalsourceid><addsrcrecordid>eNp1kEFLAzEUhIMoWKs_wFvA82pesptNjlKqFlo9rOJxiZuk3ZImbbJV_PfuWsGDeHoD8808GIQugVwDsPymAikLIgilAEAIF0doBAJEJiWnx73u7WzwT9FZSmvSg5zzEVKVcabp2uBxsFjhhelWQWMbIq6Ce2_9Ej8G71pvVMTT3V4NaMKtx9VKORc-slfVmYhnzYAugjYOzzZbZzbGd9_wOTqxyiVz8XPH6OVu-jx5yOZP97PJ7TxrKBddVnABrBQFvGlNaa4JK3UuiWHQaAWGWCsJL3NeEAkUjLbEqKYAKIEV2krBxujq0LuNYbc3qavXYR99_7KmhQRGGcnznoID1cSQUjS23sZ2o-JnDaQelqz_LNln6CGTetYvTfxt_j_0BaoLdCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591323044</pqid></control><display><type>article</type><title>Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation</title><source>SpringerLink Journals</source><creator>Bagrov, A. D. ; Rybakov, A. A.</creator><creatorcontrib>Bagrov, A. D. ; Rybakov, A. A.</creatorcontrib><description>Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the shallow-water icing model (SWIM), the problem of solving nonlinear equations with one variable plays a central role in numerical simulation. Since this problem occupies the overwhelming majority of calculations time, the question of choosing the optimal method for solving nonlinear equations and optimizing these methods becomes especially acute. This article describes the analysis of the use of various methods for solving nonlinear equations in the implementation of the SWIM solver, taking into account the features of the equations being solved, which led to a significant acceleration of the computational codes when performing calculations on JSCC RAS supercomputers.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080221110068</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Deposition ; Flight characteristics ; Flight safety ; Geometry ; Ice accumulation ; Ice formation ; Mathematical Logic and Foundations ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Optimization ; Probability Theory and Stochastic Processes ; Supercomputers ; Water drops</subject><ispartof>Lobachevskii journal of mathematics, 2021-11, Vol.42 (11), p.2503-2509</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-568137851bdd224d037d490e31cda1e0ff906746509121edf0eac5117135df983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080221110068$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080221110068$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bagrov, A. D.</creatorcontrib><creatorcontrib>Rybakov, A. A.</creatorcontrib><title>Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the shallow-water icing model (SWIM), the problem of solving nonlinear equations with one variable plays a central role in numerical simulation. Since this problem occupies the overwhelming majority of calculations time, the question of choosing the optimal method for solving nonlinear equations and optimizing these methods becomes especially acute. This article describes the analysis of the use of various methods for solving nonlinear equations in the implementation of the SWIM solver, taking into account the features of the equations being solved, which led to a significant acceleration of the computational codes when performing calculations on JSCC RAS supercomputers.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Deposition</subject><subject>Flight characteristics</subject><subject>Flight safety</subject><subject>Geometry</subject><subject>Ice accumulation</subject><subject>Ice formation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Optimization</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Supercomputers</subject><subject>Water drops</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEUhIMoWKs_wFvA82pesptNjlKqFlo9rOJxiZuk3ZImbbJV_PfuWsGDeHoD8808GIQugVwDsPymAikLIgilAEAIF0doBAJEJiWnx73u7WzwT9FZSmvSg5zzEVKVcabp2uBxsFjhhelWQWMbIq6Ce2_9Ej8G71pvVMTT3V4NaMKtx9VKORc-slfVmYhnzYAugjYOzzZbZzbGd9_wOTqxyiVz8XPH6OVu-jx5yOZP97PJ7TxrKBddVnABrBQFvGlNaa4JK3UuiWHQaAWGWCsJL3NeEAkUjLbEqKYAKIEV2krBxujq0LuNYbc3qavXYR99_7KmhQRGGcnznoID1cSQUjS23sZ2o-JnDaQelqz_LNln6CGTetYvTfxt_j_0BaoLdCE</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bagrov, A. D.</creator><creator>Rybakov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation</title><author>Bagrov, A. D. ; Rybakov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-568137851bdd224d037d490e31cda1e0ff906746509121edf0eac5117135df983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Deposition</topic><topic>Flight characteristics</topic><topic>Flight safety</topic><topic>Geometry</topic><topic>Ice accumulation</topic><topic>Ice formation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Optimization</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Supercomputers</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagrov, A. D.</creatorcontrib><creatorcontrib>Rybakov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagrov, A. D.</au><au>Rybakov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>42</volume><issue>11</issue><spage>2503</spage><epage>2509</epage><pages>2503-2509</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the shallow-water icing model (SWIM), the problem of solving nonlinear equations with one variable plays a central role in numerical simulation. Since this problem occupies the overwhelming majority of calculations time, the question of choosing the optimal method for solving nonlinear equations and optimizing these methods becomes especially acute. This article describes the analysis of the use of various methods for solving nonlinear equations in the implementation of the SWIM solver, taking into account the features of the equations being solved, which led to a significant acceleration of the computational codes when performing calculations on JSCC RAS supercomputers.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080221110068</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2021-11, Vol.42 (11), p.2503-2509 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2591323044 |
source | SpringerLink Journals |
subjects | Algebra Analysis Deposition Flight characteristics Flight safety Geometry Ice accumulation Ice formation Mathematical Logic and Foundations Mathematical models Mathematics Mathematics and Statistics Nonlinear equations Optimization Probability Theory and Stochastic Processes Supercomputers Water drops |
title | Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20a%20Method%20for%20Solving%20Nonlinear%20Equations%20in%20Shallow-Water%20Icing%20Model%20Implementation&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Bagrov,%20A.%20D.&rft.date=2021-11-01&rft.volume=42&rft.issue=11&rft.spage=2503&rft.epage=2509&rft.pages=2503-2509&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080221110068&rft_dat=%3Cproquest_cross%3E2591323044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591323044&rft_id=info:pmid/&rfr_iscdi=true |