Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation

Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2021-11, Vol.42 (11), p.2503-2509
Hauptverfasser: Bagrov, A. D., Rybakov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2509
container_issue 11
container_start_page 2503
container_title Lobachevskii journal of mathematics
container_volume 42
creator Bagrov, A. D.
Rybakov, A. A.
description Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the shallow-water icing model (SWIM), the problem of solving nonlinear equations with one variable plays a central role in numerical simulation. Since this problem occupies the overwhelming majority of calculations time, the question of choosing the optimal method for solving nonlinear equations and optimizing these methods becomes especially acute. This article describes the analysis of the use of various methods for solving nonlinear equations in the implementation of the SWIM solver, taking into account the features of the equations being solved, which led to a significant acceleration of the computational codes when performing calculations on JSCC RAS supercomputers.
doi_str_mv 10.1134/S1995080221110068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591323044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591323044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-568137851bdd224d037d490e31cda1e0ff906746509121edf0eac5117135df983</originalsourceid><addsrcrecordid>eNp1kEFLAzEUhIMoWKs_wFvA82pesptNjlKqFlo9rOJxiZuk3ZImbbJV_PfuWsGDeHoD8808GIQugVwDsPymAikLIgilAEAIF0doBAJEJiWnx73u7WzwT9FZSmvSg5zzEVKVcabp2uBxsFjhhelWQWMbIq6Ce2_9Ej8G71pvVMTT3V4NaMKtx9VKORc-slfVmYhnzYAugjYOzzZbZzbGd9_wOTqxyiVz8XPH6OVu-jx5yOZP97PJ7TxrKBddVnABrBQFvGlNaa4JK3UuiWHQaAWGWCsJL3NeEAkUjLbEqKYAKIEV2krBxujq0LuNYbc3qavXYR99_7KmhQRGGcnznoID1cSQUjS23sZ2o-JnDaQelqz_LNln6CGTetYvTfxt_j_0BaoLdCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591323044</pqid></control><display><type>article</type><title>Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation</title><source>SpringerLink Journals</source><creator>Bagrov, A. D. ; Rybakov, A. A.</creator><creatorcontrib>Bagrov, A. D. ; Rybakov, A. A.</creatorcontrib><description>Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the shallow-water icing model (SWIM), the problem of solving nonlinear equations with one variable plays a central role in numerical simulation. Since this problem occupies the overwhelming majority of calculations time, the question of choosing the optimal method for solving nonlinear equations and optimizing these methods becomes especially acute. This article describes the analysis of the use of various methods for solving nonlinear equations in the implementation of the SWIM solver, taking into account the features of the equations being solved, which led to a significant acceleration of the computational codes when performing calculations on JSCC RAS supercomputers.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080221110068</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Deposition ; Flight characteristics ; Flight safety ; Geometry ; Ice accumulation ; Ice formation ; Mathematical Logic and Foundations ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Optimization ; Probability Theory and Stochastic Processes ; Supercomputers ; Water drops</subject><ispartof>Lobachevskii journal of mathematics, 2021-11, Vol.42 (11), p.2503-2509</ispartof><rights>Pleiades Publishing, Ltd. 2021</rights><rights>Pleiades Publishing, Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-568137851bdd224d037d490e31cda1e0ff906746509121edf0eac5117135df983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080221110068$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080221110068$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bagrov, A. D.</creatorcontrib><creatorcontrib>Rybakov, A. A.</creatorcontrib><title>Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the shallow-water icing model (SWIM), the problem of solving nonlinear equations with one variable plays a central role in numerical simulation. Since this problem occupies the overwhelming majority of calculations time, the question of choosing the optimal method for solving nonlinear equations and optimizing these methods becomes especially acute. This article describes the analysis of the use of various methods for solving nonlinear equations in the implementation of the SWIM solver, taking into account the features of the equations being solved, which led to a significant acceleration of the computational codes when performing calculations on JSCC RAS supercomputers.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Deposition</subject><subject>Flight characteristics</subject><subject>Flight safety</subject><subject>Geometry</subject><subject>Ice accumulation</subject><subject>Ice formation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Optimization</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Supercomputers</subject><subject>Water drops</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEUhIMoWKs_wFvA82pesptNjlKqFlo9rOJxiZuk3ZImbbJV_PfuWsGDeHoD8808GIQugVwDsPymAikLIgilAEAIF0doBAJEJiWnx73u7WzwT9FZSmvSg5zzEVKVcabp2uBxsFjhhelWQWMbIq6Ce2_9Ej8G71pvVMTT3V4NaMKtx9VKORc-slfVmYhnzYAugjYOzzZbZzbGd9_wOTqxyiVz8XPH6OVu-jx5yOZP97PJ7TxrKBddVnABrBQFvGlNaa4JK3UuiWHQaAWGWCsJL3NeEAkUjLbEqKYAKIEV2krBxujq0LuNYbc3qavXYR99_7KmhQRGGcnznoID1cSQUjS23sZ2o-JnDaQelqz_LNln6CGTetYvTfxt_j_0BaoLdCE</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bagrov, A. D.</creator><creator>Rybakov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211101</creationdate><title>Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation</title><author>Bagrov, A. D. ; Rybakov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-568137851bdd224d037d490e31cda1e0ff906746509121edf0eac5117135df983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Deposition</topic><topic>Flight characteristics</topic><topic>Flight safety</topic><topic>Geometry</topic><topic>Ice accumulation</topic><topic>Ice formation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Optimization</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Supercomputers</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagrov, A. D.</creatorcontrib><creatorcontrib>Rybakov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagrov, A. D.</au><au>Rybakov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>42</volume><issue>11</issue><spage>2503</spage><epage>2509</epage><pages>2503-2509</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>Ice accretion simulation on aircraft profiles during their flight in an air stream containing supercooled water droplets is an extremely important task for flight safety, since the form of accreted ice significantly affects flight characteristics. In one of the models for solving the problem, the shallow-water icing model (SWIM), the problem of solving nonlinear equations with one variable plays a central role in numerical simulation. Since this problem occupies the overwhelming majority of calculations time, the question of choosing the optimal method for solving nonlinear equations and optimizing these methods becomes especially acute. This article describes the analysis of the use of various methods for solving nonlinear equations in the implementation of the SWIM solver, taking into account the features of the equations being solved, which led to a significant acceleration of the computational codes when performing calculations on JSCC RAS supercomputers.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080221110068</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2021-11, Vol.42 (11), p.2503-2509
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2591323044
source SpringerLink Journals
subjects Algebra
Analysis
Deposition
Flight characteristics
Flight safety
Geometry
Ice accumulation
Ice formation
Mathematical Logic and Foundations
Mathematical models
Mathematics
Mathematics and Statistics
Nonlinear equations
Optimization
Probability Theory and Stochastic Processes
Supercomputers
Water drops
title Selection of a Method for Solving Nonlinear Equations in Shallow-Water Icing Model Implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20a%20Method%20for%20Solving%20Nonlinear%20Equations%20in%20Shallow-Water%20Icing%20Model%20Implementation&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Bagrov,%20A.%20D.&rft.date=2021-11-01&rft.volume=42&rft.issue=11&rft.spage=2503&rft.epage=2509&rft.pages=2503-2509&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080221110068&rft_dat=%3Cproquest_cross%3E2591323044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591323044&rft_id=info:pmid/&rfr_iscdi=true