Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction
In high-quality ZnO/Mg x Zn 1 – x O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range ( f ~ 50 MHz) between two T-shape...
Gespeichert in:
Veröffentlicht in: | JETP letters 2021-09, Vol.114 (5), p.279-283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 5 |
container_start_page | 279 |
container_title | JETP letters |
container_volume | 114 |
creator | Khisameeva, A. R. Shchepetilnikov, A. V. Nefyodov, Yu. A. Kukushkin, I. V. |
description | In high-quality ZnO/Mg
x
Zn
1 –
x
O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range (
f
~ 50 MHz) between two T-shaped antennas, capacitively coupled to a two-dimensional electron system. When the sample is exposed to exciting microwave radiation with the frequency
60–140 GHz in low magnetic fields, at least three oscillations are well resolved in the high-frequency conductivity. The amplitude of the first oscillation is comparable in amplitude to Shubnikov–de Haas oscillations in strong magnetic fields. A significant advantage of this method is the absence of Ohmic contacts or metallization deposited on the sample surface, which provides additional information for understanding the origin of this phenomenon. |
doi_str_mv | 10.1134/S0021364021170070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591322802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591322802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-32fe0adc96d2e90e48fa597566a195273c66f293cda59beb3126c91b53d2797a3</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFYfwNuC59id3WSTPUpRW2gJ-OfSS9hsJiUlbupuovXmO_iGPomJFTyIlxmY7_fNMB8h58AuAUQ4uWeMg5BhXyFmLGYHZARMsUCGSXxIRoMcDPoxOfF-wxhAIuIRWU8b22rT1ug9TXOP7kW3VWNpU9JlZVzzql-Qzm3RGSzoHfrKt9oapKk3VV1_s55Wlq5sOlmudysL9PP9Y5fSGbbomk1nzcCckqNS1x7PfvqYPN5cP0xnwSK9nU-vFoEBlbSB4CUyXRglC46KYZiUOlJxJKUGFfFYGClLroQp-nGOuQAujYI8EgWPVazFmFzs925d89yhb7NN0znbn8x4pEBwnjDeU7Cn-ge9d1hmW1c9afeWAcuGPLM_efYevvf4nrVrdL-b_zd9Ad2SeBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591322802</pqid></control><display><type>article</type><title>Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction</title><source>SpringerNature Journals</source><creator>Khisameeva, A. R. ; Shchepetilnikov, A. V. ; Nefyodov, Yu. A. ; Kukushkin, I. V.</creator><creatorcontrib>Khisameeva, A. R. ; Shchepetilnikov, A. V. ; Nefyodov, Yu. A. ; Kukushkin, I. V.</creatorcontrib><description>In high-quality ZnO/Mg
x
Zn
1 –
x
O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range (
f
~ 50 MHz) between two T-shaped antennas, capacitively coupled to a two-dimensional electron system. When the sample is exposed to exciting microwave radiation with the frequency
60–140 GHz in low magnetic fields, at least three oscillations are well resolved in the high-frequency conductivity. The amplitude of the first oscillation is comparable in amplitude to Shubnikov–de Haas oscillations in strong magnetic fields. A significant advantage of this method is the absence of Ohmic contacts or metallization deposited on the sample surface, which provides additional information for understanding the origin of this phenomenon.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364021170070</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplitudes ; Atomic ; Biological and Medical Physics ; Biophysics ; Condensed Matter ; Contact resistance ; Frequency ranges ; Heterojunctions ; Magnetic fields ; Magnetoresistance ; Magnetoresistivity ; Metallizing ; Microwaves ; Molecular ; Optical and Plasma Physics ; Oscillations ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Radio signals ; Signal transmission ; Solid State Physics ; Spintronics ; Zinc oxide</subject><ispartof>JETP letters, 2021-09, Vol.114 (5), p.279-283</ispartof><rights>Pleiades Publishing, Inc. 2021. ISSN 0021-3640, JETP Letters, 2021, Vol. 114, No. 5, pp. 279–283. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2021, Vol. 114, No. 5, pp. 328–332.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-32fe0adc96d2e90e48fa597566a195273c66f293cda59beb3126c91b53d2797a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364021170070$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364021170070$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khisameeva, A. R.</creatorcontrib><creatorcontrib>Shchepetilnikov, A. V.</creatorcontrib><creatorcontrib>Nefyodov, Yu. A.</creatorcontrib><creatorcontrib>Kukushkin, I. V.</creatorcontrib><title>Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>In high-quality ZnO/Mg
x
Zn
1 –
x
O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range (
f
~ 50 MHz) between two T-shaped antennas, capacitively coupled to a two-dimensional electron system. When the sample is exposed to exciting microwave radiation with the frequency
60–140 GHz in low magnetic fields, at least three oscillations are well resolved in the high-frequency conductivity. The amplitude of the first oscillation is comparable in amplitude to Shubnikov–de Haas oscillations in strong magnetic fields. A significant advantage of this method is the absence of Ohmic contacts or metallization deposited on the sample surface, which provides additional information for understanding the origin of this phenomenon.</description><subject>Amplitudes</subject><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Condensed Matter</subject><subject>Contact resistance</subject><subject>Frequency ranges</subject><subject>Heterojunctions</subject><subject>Magnetic fields</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Metallizing</subject><subject>Microwaves</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Oscillations</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Radio signals</subject><subject>Signal transmission</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Zinc oxide</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsFYfwNuC59id3WSTPUpRW2gJ-OfSS9hsJiUlbupuovXmO_iGPomJFTyIlxmY7_fNMB8h58AuAUQ4uWeMg5BhXyFmLGYHZARMsUCGSXxIRoMcDPoxOfF-wxhAIuIRWU8b22rT1ug9TXOP7kW3VWNpU9JlZVzzql-Qzm3RGSzoHfrKt9oapKk3VV1_s55Wlq5sOlmudysL9PP9Y5fSGbbomk1nzcCckqNS1x7PfvqYPN5cP0xnwSK9nU-vFoEBlbSB4CUyXRglC46KYZiUOlJxJKUGFfFYGClLroQp-nGOuQAujYI8EgWPVazFmFzs925d89yhb7NN0znbn8x4pEBwnjDeU7Cn-ge9d1hmW1c9afeWAcuGPLM_efYevvf4nrVrdL-b_zd9Ad2SeBo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khisameeva, A. R.</creator><creator>Shchepetilnikov, A. V.</creator><creator>Nefyodov, Yu. A.</creator><creator>Kukushkin, I. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction</title><author>Khisameeva, A. R. ; Shchepetilnikov, A. V. ; Nefyodov, Yu. A. ; Kukushkin, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-32fe0adc96d2e90e48fa597566a195273c66f293cda59beb3126c91b53d2797a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Condensed Matter</topic><topic>Contact resistance</topic><topic>Frequency ranges</topic><topic>Heterojunctions</topic><topic>Magnetic fields</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Metallizing</topic><topic>Microwaves</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Oscillations</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Radio signals</topic><topic>Signal transmission</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khisameeva, A. R.</creatorcontrib><creatorcontrib>Shchepetilnikov, A. V.</creatorcontrib><creatorcontrib>Nefyodov, Yu. A.</creatorcontrib><creatorcontrib>Kukushkin, I. V.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khisameeva, A. R.</au><au>Shchepetilnikov, A. V.</au><au>Nefyodov, Yu. A.</au><au>Kukushkin, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>114</volume><issue>5</issue><spage>279</spage><epage>283</epage><pages>279-283</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>In high-quality ZnO/Mg
x
Zn
1 –
x
O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range (
f
~ 50 MHz) between two T-shaped antennas, capacitively coupled to a two-dimensional electron system. When the sample is exposed to exciting microwave radiation with the frequency
60–140 GHz in low magnetic fields, at least three oscillations are well resolved in the high-frequency conductivity. The amplitude of the first oscillation is comparable in amplitude to Shubnikov–de Haas oscillations in strong magnetic fields. A significant advantage of this method is the absence of Ohmic contacts or metallization deposited on the sample surface, which provides additional information for understanding the origin of this phenomenon.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364021170070</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-3640 |
ispartof | JETP letters, 2021-09, Vol.114 (5), p.279-283 |
issn | 0021-3640 1090-6487 |
language | eng |
recordid | cdi_proquest_journals_2591322802 |
source | SpringerNature Journals |
subjects | Amplitudes Atomic Biological and Medical Physics Biophysics Condensed Matter Contact resistance Frequency ranges Heterojunctions Magnetic fields Magnetoresistance Magnetoresistivity Metallizing Microwaves Molecular Optical and Plasma Physics Oscillations Particle and Nuclear Physics Physics Physics and Astronomy Quantum Information Technology Radio signals Signal transmission Solid State Physics Spintronics Zinc oxide |
title | Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contactless%20Observation%20of%20Microwave%20Induced%20Resistance%20Oscillations%20in%20ZnO/MgxZn1%20%E2%80%93xO%20Heterojunction&rft.jtitle=JETP%20letters&rft.au=Khisameeva,%20A.%20R.&rft.date=2021-09-01&rft.volume=114&rft.issue=5&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364021170070&rft_dat=%3Cproquest_cross%3E2591322802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591322802&rft_id=info:pmid/&rfr_iscdi=true |