Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction

In high-quality ZnO/Mg x Zn 1 – x O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range ( f ~ 50 MHz) between two T-shape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2021-09, Vol.114 (5), p.279-283
Hauptverfasser: Khisameeva, A. R., Shchepetilnikov, A. V., Nefyodov, Yu. A., Kukushkin, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 5
container_start_page 279
container_title JETP letters
container_volume 114
creator Khisameeva, A. R.
Shchepetilnikov, A. V.
Nefyodov, Yu. A.
Kukushkin, I. V.
description In high-quality ZnO/Mg x Zn 1 – x O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range ( f ~ 50 MHz) between two T-shaped antennas, capacitively coupled to a two-dimensional electron system. When the sample is exposed to exciting microwave radiation with the frequency 60–140 GHz in low magnetic fields, at least three oscillations are well resolved in the high-frequency conductivity. The amplitude of the first oscillation is comparable in amplitude to Shubnikov–de Haas oscillations in strong magnetic fields. A significant advantage of this method is the absence of Ohmic contacts or metallization deposited on the sample surface, which provides additional information for understanding the origin of this phenomenon.
doi_str_mv 10.1134/S0021364021170070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591322802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591322802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-32fe0adc96d2e90e48fa597566a195273c66f293cda59beb3126c91b53d2797a3</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFYfwNuC59id3WSTPUpRW2gJ-OfSS9hsJiUlbupuovXmO_iGPomJFTyIlxmY7_fNMB8h58AuAUQ4uWeMg5BhXyFmLGYHZARMsUCGSXxIRoMcDPoxOfF-wxhAIuIRWU8b22rT1ug9TXOP7kW3VWNpU9JlZVzzql-Qzm3RGSzoHfrKt9oapKk3VV1_s55Wlq5sOlmudysL9PP9Y5fSGbbomk1nzcCckqNS1x7PfvqYPN5cP0xnwSK9nU-vFoEBlbSB4CUyXRglC46KYZiUOlJxJKUGFfFYGClLroQp-nGOuQAujYI8EgWPVazFmFzs925d89yhb7NN0znbn8x4pEBwnjDeU7Cn-ge9d1hmW1c9afeWAcuGPLM_efYevvf4nrVrdL-b_zd9Ad2SeBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591322802</pqid></control><display><type>article</type><title>Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction</title><source>SpringerNature Journals</source><creator>Khisameeva, A. R. ; Shchepetilnikov, A. V. ; Nefyodov, Yu. A. ; Kukushkin, I. V.</creator><creatorcontrib>Khisameeva, A. R. ; Shchepetilnikov, A. V. ; Nefyodov, Yu. A. ; Kukushkin, I. V.</creatorcontrib><description>In high-quality ZnO/Mg x Zn 1 – x O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range ( f ~ 50 MHz) between two T-shaped antennas, capacitively coupled to a two-dimensional electron system. When the sample is exposed to exciting microwave radiation with the frequency 60–140 GHz in low magnetic fields, at least three oscillations are well resolved in the high-frequency conductivity. The amplitude of the first oscillation is comparable in amplitude to Shubnikov–de Haas oscillations in strong magnetic fields. A significant advantage of this method is the absence of Ohmic contacts or metallization deposited on the sample surface, which provides additional information for understanding the origin of this phenomenon.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364021170070</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplitudes ; Atomic ; Biological and Medical Physics ; Biophysics ; Condensed Matter ; Contact resistance ; Frequency ranges ; Heterojunctions ; Magnetic fields ; Magnetoresistance ; Magnetoresistivity ; Metallizing ; Microwaves ; Molecular ; Optical and Plasma Physics ; Oscillations ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Radio signals ; Signal transmission ; Solid State Physics ; Spintronics ; Zinc oxide</subject><ispartof>JETP letters, 2021-09, Vol.114 (5), p.279-283</ispartof><rights>Pleiades Publishing, Inc. 2021. ISSN 0021-3640, JETP Letters, 2021, Vol. 114, No. 5, pp. 279–283. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2021, Vol. 114, No. 5, pp. 328–332.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-32fe0adc96d2e90e48fa597566a195273c66f293cda59beb3126c91b53d2797a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364021170070$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364021170070$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khisameeva, A. R.</creatorcontrib><creatorcontrib>Shchepetilnikov, A. V.</creatorcontrib><creatorcontrib>Nefyodov, Yu. A.</creatorcontrib><creatorcontrib>Kukushkin, I. V.</creatorcontrib><title>Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>In high-quality ZnO/Mg x Zn 1 – x O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range ( f ~ 50 MHz) between two T-shaped antennas, capacitively coupled to a two-dimensional electron system. When the sample is exposed to exciting microwave radiation with the frequency 60–140 GHz in low magnetic fields, at least three oscillations are well resolved in the high-frequency conductivity. The amplitude of the first oscillation is comparable in amplitude to Shubnikov–de Haas oscillations in strong magnetic fields. A significant advantage of this method is the absence of Ohmic contacts or metallization deposited on the sample surface, which provides additional information for understanding the origin of this phenomenon.</description><subject>Amplitudes</subject><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Condensed Matter</subject><subject>Contact resistance</subject><subject>Frequency ranges</subject><subject>Heterojunctions</subject><subject>Magnetic fields</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Metallizing</subject><subject>Microwaves</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Oscillations</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Radio signals</subject><subject>Signal transmission</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><subject>Zinc oxide</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsFYfwNuC59id3WSTPUpRW2gJ-OfSS9hsJiUlbupuovXmO_iGPomJFTyIlxmY7_fNMB8h58AuAUQ4uWeMg5BhXyFmLGYHZARMsUCGSXxIRoMcDPoxOfF-wxhAIuIRWU8b22rT1ug9TXOP7kW3VWNpU9JlZVzzql-Qzm3RGSzoHfrKt9oapKk3VV1_s55Wlq5sOlmudysL9PP9Y5fSGbbomk1nzcCckqNS1x7PfvqYPN5cP0xnwSK9nU-vFoEBlbSB4CUyXRglC46KYZiUOlJxJKUGFfFYGClLroQp-nGOuQAujYI8EgWPVazFmFzs925d89yhb7NN0znbn8x4pEBwnjDeU7Cn-ge9d1hmW1c9afeWAcuGPLM_efYevvf4nrVrdL-b_zd9Ad2SeBo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Khisameeva, A. R.</creator><creator>Shchepetilnikov, A. V.</creator><creator>Nefyodov, Yu. A.</creator><creator>Kukushkin, I. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction</title><author>Khisameeva, A. R. ; Shchepetilnikov, A. V. ; Nefyodov, Yu. A. ; Kukushkin, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-32fe0adc96d2e90e48fa597566a195273c66f293cda59beb3126c91b53d2797a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Condensed Matter</topic><topic>Contact resistance</topic><topic>Frequency ranges</topic><topic>Heterojunctions</topic><topic>Magnetic fields</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Metallizing</topic><topic>Microwaves</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Oscillations</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Radio signals</topic><topic>Signal transmission</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khisameeva, A. R.</creatorcontrib><creatorcontrib>Shchepetilnikov, A. V.</creatorcontrib><creatorcontrib>Nefyodov, Yu. A.</creatorcontrib><creatorcontrib>Kukushkin, I. V.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khisameeva, A. R.</au><au>Shchepetilnikov, A. V.</au><au>Nefyodov, Yu. A.</au><au>Kukushkin, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>114</volume><issue>5</issue><spage>279</spage><epage>283</epage><pages>279-283</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>In high-quality ZnO/Mg x Zn 1 – x O heterojunctions, microwave-induced magnetoresistance oscillations have been investigated using a contactless technique. The basic detection principle relies on the measurements of a signal transmission in the radio frequency range ( f ~ 50 MHz) between two T-shaped antennas, capacitively coupled to a two-dimensional electron system. When the sample is exposed to exciting microwave radiation with the frequency 60–140 GHz in low magnetic fields, at least three oscillations are well resolved in the high-frequency conductivity. The amplitude of the first oscillation is comparable in amplitude to Shubnikov–de Haas oscillations in strong magnetic fields. A significant advantage of this method is the absence of Ohmic contacts or metallization deposited on the sample surface, which provides additional information for understanding the origin of this phenomenon.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364021170070</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2021-09, Vol.114 (5), p.279-283
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_2591322802
source SpringerNature Journals
subjects Amplitudes
Atomic
Biological and Medical Physics
Biophysics
Condensed Matter
Contact resistance
Frequency ranges
Heterojunctions
Magnetic fields
Magnetoresistance
Magnetoresistivity
Metallizing
Microwaves
Molecular
Optical and Plasma Physics
Oscillations
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum Information Technology
Radio signals
Signal transmission
Solid State Physics
Spintronics
Zinc oxide
title Contactless Observation of Microwave Induced Resistance Oscillations in ZnO/MgxZn1 –xO Heterojunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contactless%20Observation%20of%20Microwave%20Induced%20Resistance%20Oscillations%20in%20ZnO/MgxZn1%20%E2%80%93xO%20Heterojunction&rft.jtitle=JETP%20letters&rft.au=Khisameeva,%20A.%20R.&rft.date=2021-09-01&rft.volume=114&rft.issue=5&rft.spage=279&rft.epage=283&rft.pages=279-283&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364021170070&rft_dat=%3Cproquest_cross%3E2591322802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2591322802&rft_id=info:pmid/&rfr_iscdi=true