RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification

Radiology reports are unstructured and contain the imaging findings and corresponding diagnoses transcribed by radiologists which include clinical facts and negated and/or uncertain statements. Extracting pathologic findings and diagnoses from radiology reports is important for quality control, popu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Jaiswal, Ajay, Tang, Liyan, Ghosh, Meheli, Rousseau, Justin, Peng, Yifan, Ding, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jaiswal, Ajay
Tang, Liyan
Ghosh, Meheli
Rousseau, Justin
Peng, Yifan
Ding, Ying
description Radiology reports are unstructured and contain the imaging findings and corresponding diagnoses transcribed by radiologists which include clinical facts and negated and/or uncertain statements. Extracting pathologic findings and diagnoses from radiology reports is important for quality control, population health, and monitoring of disease progress. Existing works, primarily rely either on rule-based systems or transformer-based pre-trained model fine-tuning, but could not take the factual and uncertain information into consideration, and therefore generate false-positive outputs. In this work, we introduce three sedulous augmentation techniques which retain factual and critical information while generating augmentations for contrastive learning. We introduce RadBERT-CL, which fuses these information into BlueBert via a self-supervised contrastive loss. Our experiments on MIMIC-CXR show superior performance of RadBERT-CL on fine-tuning for multi-class, multi-label report classification. We illustrate that when few labeled data are available, RadBERT-CL outperforms conventional SOTA transformers (BERT/BlueBert) by significantly larger margins (6-11%). We also show that the representations learned by RadBERT-CL can capture critical medical information in the latent space.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2590781684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590781684</sourcerecordid><originalsourceid>FETCH-proquest_journals_25907816843</originalsourceid><addsrcrecordid>eNqNi08LgjAcQEcQJOV3GHQezPm3bjWUDp7Eu_ywKZOx2TYLv30e-gCd3uG9t0MBi-OIFAljBxQ6N1FKWZazNI0D1DbwvJdNS3h9xRX0fgGlVnL7gBWYG-0tOC_fAtcCrJZ6xJWxeJukUWZccSNmYz3mCpyTg-zBS6NPaD-AciL88YjOVdnyB5mteS3C-W4yi9Wb6lh6oXkRZUUS_1d9AfH_P9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590781684</pqid></control><display><type>article</type><title>RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification</title><source>Free E- Journals</source><creator>Jaiswal, Ajay ; Tang, Liyan ; Ghosh, Meheli ; Rousseau, Justin ; Peng, Yifan ; Ding, Ying</creator><creatorcontrib>Jaiswal, Ajay ; Tang, Liyan ; Ghosh, Meheli ; Rousseau, Justin ; Peng, Yifan ; Ding, Ying</creatorcontrib><description>Radiology reports are unstructured and contain the imaging findings and corresponding diagnoses transcribed by radiologists which include clinical facts and negated and/or uncertain statements. Extracting pathologic findings and diagnoses from radiology reports is important for quality control, population health, and monitoring of disease progress. Existing works, primarily rely either on rule-based systems or transformer-based pre-trained model fine-tuning, but could not take the factual and uncertain information into consideration, and therefore generate false-positive outputs. In this work, we introduce three sedulous augmentation techniques which retain factual and critical information while generating augmentations for contrastive learning. We introduce RadBERT-CL, which fuses these information into BlueBert via a self-supervised contrastive loss. Our experiments on MIMIC-CXR show superior performance of RadBERT-CL on fine-tuning for multi-class, multi-label report classification. We illustrate that when few labeled data are available, RadBERT-CL outperforms conventional SOTA transformers (BERT/BlueBert) by significantly larger margins (6-11%). We also show that the representations learned by RadBERT-CL can capture critical medical information in the latent space.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Learning ; Quality control ; Radiology ; Transformers</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jaiswal, Ajay</creatorcontrib><creatorcontrib>Tang, Liyan</creatorcontrib><creatorcontrib>Ghosh, Meheli</creatorcontrib><creatorcontrib>Rousseau, Justin</creatorcontrib><creatorcontrib>Peng, Yifan</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><title>RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification</title><title>arXiv.org</title><description>Radiology reports are unstructured and contain the imaging findings and corresponding diagnoses transcribed by radiologists which include clinical facts and negated and/or uncertain statements. Extracting pathologic findings and diagnoses from radiology reports is important for quality control, population health, and monitoring of disease progress. Existing works, primarily rely either on rule-based systems or transformer-based pre-trained model fine-tuning, but could not take the factual and uncertain information into consideration, and therefore generate false-positive outputs. In this work, we introduce three sedulous augmentation techniques which retain factual and critical information while generating augmentations for contrastive learning. We introduce RadBERT-CL, which fuses these information into BlueBert via a self-supervised contrastive loss. Our experiments on MIMIC-CXR show superior performance of RadBERT-CL on fine-tuning for multi-class, multi-label report classification. We illustrate that when few labeled data are available, RadBERT-CL outperforms conventional SOTA transformers (BERT/BlueBert) by significantly larger margins (6-11%). We also show that the representations learned by RadBERT-CL can capture critical medical information in the latent space.</description><subject>Classification</subject><subject>Learning</subject><subject>Quality control</subject><subject>Radiology</subject><subject>Transformers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi08LgjAcQEcQJOV3GHQezPm3bjWUDp7Eu_ywKZOx2TYLv30e-gCd3uG9t0MBi-OIFAljBxQ6N1FKWZazNI0D1DbwvJdNS3h9xRX0fgGlVnL7gBWYG-0tOC_fAtcCrJZ6xJWxeJukUWZccSNmYz3mCpyTg-zBS6NPaD-AciL88YjOVdnyB5mteS3C-W4yi9Wb6lh6oXkRZUUS_1d9AfH_P9Q</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>Jaiswal, Ajay</creator><creator>Tang, Liyan</creator><creator>Ghosh, Meheli</creator><creator>Rousseau, Justin</creator><creator>Peng, Yifan</creator><creator>Ding, Ying</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211119</creationdate><title>RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification</title><author>Jaiswal, Ajay ; Tang, Liyan ; Ghosh, Meheli ; Rousseau, Justin ; Peng, Yifan ; Ding, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25907816843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Learning</topic><topic>Quality control</topic><topic>Radiology</topic><topic>Transformers</topic><toplevel>online_resources</toplevel><creatorcontrib>Jaiswal, Ajay</creatorcontrib><creatorcontrib>Tang, Liyan</creatorcontrib><creatorcontrib>Ghosh, Meheli</creatorcontrib><creatorcontrib>Rousseau, Justin</creatorcontrib><creatorcontrib>Peng, Yifan</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaiswal, Ajay</au><au>Tang, Liyan</au><au>Ghosh, Meheli</au><au>Rousseau, Justin</au><au>Peng, Yifan</au><au>Ding, Ying</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification</atitle><jtitle>arXiv.org</jtitle><date>2021-11-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Radiology reports are unstructured and contain the imaging findings and corresponding diagnoses transcribed by radiologists which include clinical facts and negated and/or uncertain statements. Extracting pathologic findings and diagnoses from radiology reports is important for quality control, population health, and monitoring of disease progress. Existing works, primarily rely either on rule-based systems or transformer-based pre-trained model fine-tuning, but could not take the factual and uncertain information into consideration, and therefore generate false-positive outputs. In this work, we introduce three sedulous augmentation techniques which retain factual and critical information while generating augmentations for contrastive learning. We introduce RadBERT-CL, which fuses these information into BlueBert via a self-supervised contrastive loss. Our experiments on MIMIC-CXR show superior performance of RadBERT-CL on fine-tuning for multi-class, multi-label report classification. We illustrate that when few labeled data are available, RadBERT-CL outperforms conventional SOTA transformers (BERT/BlueBert) by significantly larger margins (6-11%). We also show that the representations learned by RadBERT-CL can capture critical medical information in the latent space.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2590781684
source Free E- Journals
subjects Classification
Learning
Quality control
Radiology
Transformers
title RadBERT-CL: Factually-Aware Contrastive Learning For Radiology Report Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=RadBERT-CL:%20Factually-Aware%20Contrastive%20Learning%20For%20Radiology%20Report%20Classification&rft.jtitle=arXiv.org&rft.au=Jaiswal,%20Ajay&rft.date=2021-11-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2590781684%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590781684&rft_id=info:pmid/&rfr_iscdi=true