Effect of grain–grain boundary on ZnO nanorod-based UV photosensor: a complex impedance spectroscopic study
ZnO nanorod-based UV photosensing devices are synthesized using one-pot synthesis method, and their sensing properties are studied with the variation of nanorod growth area. With the variation of electrode position for the maximum growth area, the UV photosensing properties are thoroughly examined....
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-12, Vol.56 (34), p.19128-19143 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19143 |
---|---|
container_issue | 34 |
container_start_page | 19128 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Ghosh, Ria Majumder, Rahul Kundu, Soumalya Pradhan, Monalisa Roy, Subhadip Gayen, Rabindranath Pal Chowdhury, Manish |
description | ZnO nanorod-based UV photosensing devices are synthesized using one-pot synthesis method, and their sensing properties are studied with the variation of nanorod growth area. With the variation of electrode position for the maximum growth area, the UV photosensing properties are thoroughly examined. Structural, morphological and optical properties are studied using XRD, FEG-SEM, FEG-TEM and UV–VIS spectroscopy. AC electrical conductivity, dielectric measurements and modulus spectroscopy at room temperature in a frequency range from5 Hz to 5 MHz are performed. During the electrical conduction processes in the sample, the physical parameters of ZnO nanostructures such as dielectric constant, relaxation frequency and electrical conductivity are examined at dark and UV-illuminated condition. The dependence of conductivity, dielectric constants and modulus with frequency and UV on–off conditions are discussed. The correlation between response and recovery time with growth surface area of ZnO nanostructure is established with the help of complex impedance spectroscopy. The imaginary part of electrical modulus versus angular frequency is drawn, and the value of stretch exponent (
β
) is calculated for maximum and minimum surface area under dark and UV-illuminated condition from where the type of relaxation process is studied. |
doi_str_mv | 10.1007/s10853-021-06459-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2590780188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A681014064</galeid><sourcerecordid>A681014064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4dadebfaa61821d3b7bebbfcd98dda764db7a1ddba55e2ad09636e7f4155e2e03</originalsourceid><addsrcrecordid>eNp9kc9qVTEQxoMoeK2-gKuAKxepk5y_110prS0UCmpduAmTZHI95Z7kmJwDbVe-Q9_QJzHtFcoFkVkME37fDPk-xt5KOJQA3YcsoW8qAUoKaOtmLe6esZVsukrUPVTP2QpAKaHqVr5kr3K-BoCmU3LFxhPvyc48er5JOITfv-4fOzdxCQ7TLY-Bfw-XPGCIKTphMJPjV9_49CPOMVPIMX3kyG0cpy3d8GGcyGGwxPNUFqeYbZwGy_O8uNvX7IXHbaY3f_sBuzo9-Xp8Ji4uP50fH10IWyuYRe3QkfGIreyVdJXpDBnjrVv3zmHX1s50KJ0z2DSk0MG6rVrqfC0fZoLqgL3b7Z1S_LlQnvV1XFIoJ7Vq1tD1IPv-idrglvQQfJwT2nHIVh-1vQRZFy8LdfgPqpSjcbAxkB_K-57g_Z6gMDPdzBtcctbnXz7vs2rH2mJUTuT1lIax2K4l6Idk9S5ZXZLVj8nquyKqdqJc4LCh9PS7_6j-AFtiqCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590780188</pqid></control><display><type>article</type><title>Effect of grain–grain boundary on ZnO nanorod-based UV photosensor: a complex impedance spectroscopic study</title><source>SpringerLink Journals</source><creator>Ghosh, Ria ; Majumder, Rahul ; Kundu, Soumalya ; Pradhan, Monalisa ; Roy, Subhadip ; Gayen, Rabindranath ; Pal Chowdhury, Manish</creator><creatorcontrib>Ghosh, Ria ; Majumder, Rahul ; Kundu, Soumalya ; Pradhan, Monalisa ; Roy, Subhadip ; Gayen, Rabindranath ; Pal Chowdhury, Manish</creatorcontrib><description>ZnO nanorod-based UV photosensing devices are synthesized using one-pot synthesis method, and their sensing properties are studied with the variation of nanorod growth area. With the variation of electrode position for the maximum growth area, the UV photosensing properties are thoroughly examined. Structural, morphological and optical properties are studied using XRD, FEG-SEM, FEG-TEM and UV–VIS spectroscopy. AC electrical conductivity, dielectric measurements and modulus spectroscopy at room temperature in a frequency range from5 Hz to 5 MHz are performed. During the electrical conduction processes in the sample, the physical parameters of ZnO nanostructures such as dielectric constant, relaxation frequency and electrical conductivity are examined at dark and UV-illuminated condition. The dependence of conductivity, dielectric constants and modulus with frequency and UV on–off conditions are discussed. The correlation between response and recovery time with growth surface area of ZnO nanostructure is established with the help of complex impedance spectroscopy. The imaginary part of electrical modulus versus angular frequency is drawn, and the value of stretch exponent (
β
) is calculated for maximum and minimum surface area under dark and UV-illuminated condition from where the type of relaxation process is studied.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06459-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dielectric relaxation ; Electric properties ; Electrical conduction ; Electrical conductivity ; Electrical resistivity ; Energy Materials ; Frequency ranges ; Grain boundaries ; Materials Science ; Mathematical analysis ; Nanorods ; Nanostructure ; Optical properties ; Permittivity ; Physical properties ; Polymer Sciences ; Recovery time ; Room temperature ; Solid Mechanics ; Spectrum analysis ; Surface area ; Zinc oxide</subject><ispartof>Journal of materials science, 2021-12, Vol.56 (34), p.19128-19143</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-4dadebfaa61821d3b7bebbfcd98dda764db7a1ddba55e2ad09636e7f4155e2e03</citedby><cites>FETCH-LOGICAL-c420t-4dadebfaa61821d3b7bebbfcd98dda764db7a1ddba55e2ad09636e7f4155e2e03</cites><orcidid>0000-0003-4001-8048 ; 0000-0002-0815-590X ; 0000-0002-6483-6291 ; 0000-0002-3845-7781 ; 0000-0001-6064-0614 ; 0000-0001-6691-1382 ; 0000-0002-4522-5559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06459-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06459-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ghosh, Ria</creatorcontrib><creatorcontrib>Majumder, Rahul</creatorcontrib><creatorcontrib>Kundu, Soumalya</creatorcontrib><creatorcontrib>Pradhan, Monalisa</creatorcontrib><creatorcontrib>Roy, Subhadip</creatorcontrib><creatorcontrib>Gayen, Rabindranath</creatorcontrib><creatorcontrib>Pal Chowdhury, Manish</creatorcontrib><title>Effect of grain–grain boundary on ZnO nanorod-based UV photosensor: a complex impedance spectroscopic study</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>ZnO nanorod-based UV photosensing devices are synthesized using one-pot synthesis method, and their sensing properties are studied with the variation of nanorod growth area. With the variation of electrode position for the maximum growth area, the UV photosensing properties are thoroughly examined. Structural, morphological and optical properties are studied using XRD, FEG-SEM, FEG-TEM and UV–VIS spectroscopy. AC electrical conductivity, dielectric measurements and modulus spectroscopy at room temperature in a frequency range from5 Hz to 5 MHz are performed. During the electrical conduction processes in the sample, the physical parameters of ZnO nanostructures such as dielectric constant, relaxation frequency and electrical conductivity are examined at dark and UV-illuminated condition. The dependence of conductivity, dielectric constants and modulus with frequency and UV on–off conditions are discussed. The correlation between response and recovery time with growth surface area of ZnO nanostructure is established with the help of complex impedance spectroscopy. The imaginary part of electrical modulus versus angular frequency is drawn, and the value of stretch exponent (
β
) is calculated for maximum and minimum surface area under dark and UV-illuminated condition from where the type of relaxation process is studied.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dielectric relaxation</subject><subject>Electric properties</subject><subject>Electrical conduction</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy Materials</subject><subject>Frequency ranges</subject><subject>Grain boundaries</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Permittivity</subject><subject>Physical properties</subject><subject>Polymer Sciences</subject><subject>Recovery time</subject><subject>Room temperature</subject><subject>Solid Mechanics</subject><subject>Spectrum analysis</subject><subject>Surface area</subject><subject>Zinc oxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9qVTEQxoMoeK2-gKuAKxepk5y_110prS0UCmpduAmTZHI95Z7kmJwDbVe-Q9_QJzHtFcoFkVkME37fDPk-xt5KOJQA3YcsoW8qAUoKaOtmLe6esZVsukrUPVTP2QpAKaHqVr5kr3K-BoCmU3LFxhPvyc48er5JOITfv-4fOzdxCQ7TLY-Bfw-XPGCIKTphMJPjV9_49CPOMVPIMX3kyG0cpy3d8GGcyGGwxPNUFqeYbZwGy_O8uNvX7IXHbaY3f_sBuzo9-Xp8Ji4uP50fH10IWyuYRe3QkfGIreyVdJXpDBnjrVv3zmHX1s50KJ0z2DSk0MG6rVrqfC0fZoLqgL3b7Z1S_LlQnvV1XFIoJ7Vq1tD1IPv-idrglvQQfJwT2nHIVh-1vQRZFy8LdfgPqpSjcbAxkB_K-57g_Z6gMDPdzBtcctbnXz7vs2rH2mJUTuT1lIax2K4l6Idk9S5ZXZLVj8nquyKqdqJc4LCh9PS7_6j-AFtiqCw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ghosh, Ria</creator><creator>Majumder, Rahul</creator><creator>Kundu, Soumalya</creator><creator>Pradhan, Monalisa</creator><creator>Roy, Subhadip</creator><creator>Gayen, Rabindranath</creator><creator>Pal Chowdhury, Manish</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4001-8048</orcidid><orcidid>https://orcid.org/0000-0002-0815-590X</orcidid><orcidid>https://orcid.org/0000-0002-6483-6291</orcidid><orcidid>https://orcid.org/0000-0002-3845-7781</orcidid><orcidid>https://orcid.org/0000-0001-6064-0614</orcidid><orcidid>https://orcid.org/0000-0001-6691-1382</orcidid><orcidid>https://orcid.org/0000-0002-4522-5559</orcidid></search><sort><creationdate>20211201</creationdate><title>Effect of grain–grain boundary on ZnO nanorod-based UV photosensor: a complex impedance spectroscopic study</title><author>Ghosh, Ria ; Majumder, Rahul ; Kundu, Soumalya ; Pradhan, Monalisa ; Roy, Subhadip ; Gayen, Rabindranath ; Pal Chowdhury, Manish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4dadebfaa61821d3b7bebbfcd98dda764db7a1ddba55e2ad09636e7f4155e2e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dielectric relaxation</topic><topic>Electric properties</topic><topic>Electrical conduction</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy Materials</topic><topic>Frequency ranges</topic><topic>Grain boundaries</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Permittivity</topic><topic>Physical properties</topic><topic>Polymer Sciences</topic><topic>Recovery time</topic><topic>Room temperature</topic><topic>Solid Mechanics</topic><topic>Spectrum analysis</topic><topic>Surface area</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Ria</creatorcontrib><creatorcontrib>Majumder, Rahul</creatorcontrib><creatorcontrib>Kundu, Soumalya</creatorcontrib><creatorcontrib>Pradhan, Monalisa</creatorcontrib><creatorcontrib>Roy, Subhadip</creatorcontrib><creatorcontrib>Gayen, Rabindranath</creatorcontrib><creatorcontrib>Pal Chowdhury, Manish</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Ria</au><au>Majumder, Rahul</au><au>Kundu, Soumalya</au><au>Pradhan, Monalisa</au><au>Roy, Subhadip</au><au>Gayen, Rabindranath</au><au>Pal Chowdhury, Manish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of grain–grain boundary on ZnO nanorod-based UV photosensor: a complex impedance spectroscopic study</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>56</volume><issue>34</issue><spage>19128</spage><epage>19143</epage><pages>19128-19143</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>ZnO nanorod-based UV photosensing devices are synthesized using one-pot synthesis method, and their sensing properties are studied with the variation of nanorod growth area. With the variation of electrode position for the maximum growth area, the UV photosensing properties are thoroughly examined. Structural, morphological and optical properties are studied using XRD, FEG-SEM, FEG-TEM and UV–VIS spectroscopy. AC electrical conductivity, dielectric measurements and modulus spectroscopy at room temperature in a frequency range from5 Hz to 5 MHz are performed. During the electrical conduction processes in the sample, the physical parameters of ZnO nanostructures such as dielectric constant, relaxation frequency and electrical conductivity are examined at dark and UV-illuminated condition. The dependence of conductivity, dielectric constants and modulus with frequency and UV on–off conditions are discussed. The correlation between response and recovery time with growth surface area of ZnO nanostructure is established with the help of complex impedance spectroscopy. The imaginary part of electrical modulus versus angular frequency is drawn, and the value of stretch exponent (
β
) is calculated for maximum and minimum surface area under dark and UV-illuminated condition from where the type of relaxation process is studied.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06459-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4001-8048</orcidid><orcidid>https://orcid.org/0000-0002-0815-590X</orcidid><orcidid>https://orcid.org/0000-0002-6483-6291</orcidid><orcidid>https://orcid.org/0000-0002-3845-7781</orcidid><orcidid>https://orcid.org/0000-0001-6064-0614</orcidid><orcidid>https://orcid.org/0000-0001-6691-1382</orcidid><orcidid>https://orcid.org/0000-0002-4522-5559</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-12, Vol.56 (34), p.19128-19143 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2590780188 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Dielectric relaxation Electric properties Electrical conduction Electrical conductivity Electrical resistivity Energy Materials Frequency ranges Grain boundaries Materials Science Mathematical analysis Nanorods Nanostructure Optical properties Permittivity Physical properties Polymer Sciences Recovery time Room temperature Solid Mechanics Spectrum analysis Surface area Zinc oxide |
title | Effect of grain–grain boundary on ZnO nanorod-based UV photosensor: a complex impedance spectroscopic study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20grain%E2%80%93grain%20boundary%20on%20ZnO%20nanorod-based%20UV%20photosensor:%20a%20complex%20impedance%20spectroscopic%20study&rft.jtitle=Journal%20of%20materials%20science&rft.au=Ghosh,%20Ria&rft.date=2021-12-01&rft.volume=56&rft.issue=34&rft.spage=19128&rft.epage=19143&rft.pages=19128-19143&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06459-z&rft_dat=%3Cgale_proqu%3EA681014064%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590780188&rft_id=info:pmid/&rft_galeid=A681014064&rfr_iscdi=true |