A 3-Node Co-Rotational Triangular Finite Element for Non-Smooth, Folded and Multi-Shell Laminated Composite Structures

Based on the first-order shear deformation theory, a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth, folded and multi-shell laminated composite structures. The two smaller components of the mid-surface normal vector of shell at a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2021, Vol.129 (2), p.485-518
Hauptverfasser: Li, Zhongxue, Ji, Jiawei, Vu-Quoc, Loc, A. Izzuddin, Bassam, Zhuo, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 518
container_issue 2
container_start_page 485
container_title Computer modeling in engineering & sciences
container_volume 129
creator Li, Zhongxue
Ji, Jiawei
Vu-Quoc, Loc
A. Izzuddin, Bassam
Zhuo, Xin
description Based on the first-order shear deformation theory, a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth, folded and multi-shell laminated composite structures. The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system. In the global coordinate system, two smaller components of one vector, together with the smallest or second smallest component of another vector, of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables, whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell (away from non-smooth intersections) are defined as rotational variables. All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure, and thus improve the computational efficiency in the nonlinear solution of these composite shell structures. Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables, and the second derivatives of the strain energy functional with respect to local nodal variables, symmetric tangent stiffness matrices in local and global coordinate systems are obtained. To overcome shear locking, the assumed transverse shear strains obtained from the line-integration approach are employed. The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests, several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.
doi_str_mv 10.32604/cmes.2021.016050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2590723304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590723304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1aaea6ac958d45ce6ad94f7f91e6fb0287ed1efc972b39c0812a9a1b94a4978a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEYhIMoWKs_wFvAq6n52M1ujmVpVagVbD2Ht9ms3ZLd1CQr-O9trQdPMzDDwDwI3TI6EVzS7MF0Nk445WxCmaQ5PUMjlnNJWE7l-T9_ia5i3FEqpCjVCH1NsSBLX1tcefLmE6TW9-DwOrTQfwwOAp63fZssnjnb2T7hxge89D1Zdd6n7T2ee1fbGkNf45fBpZasttY5vICu7SEdksp3ex-PE6sUBpOGYOM1umjARXvzp2P0Pp-tqyeyeH18rqYLYgSTiTAACxKMyss6y42VUKusKRrFrGw2lJeFrZltjCr4RihDS8ZBAduoDDJVlCDG6O60uw_-c7Ax6Z0fwuFg1DxXtOBC0OzQYqeWCT7GYBu9D20H4Vszqn_x6iNefcSrT3jFD8aRbw4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590723304</pqid></control><display><type>article</type><title>A 3-Node Co-Rotational Triangular Finite Element for Non-Smooth, Folded and Multi-Shell Laminated Composite Structures</title><source>Tech Science Press</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Zhongxue ; Ji, Jiawei ; Vu-Quoc, Loc ; A. Izzuddin, Bassam ; Zhuo, Xin</creator><creatorcontrib>Li, Zhongxue ; Ji, Jiawei ; Vu-Quoc, Loc ; A. Izzuddin, Bassam ; Zhuo, Xin</creatorcontrib><description>Based on the first-order shear deformation theory, a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth, folded and multi-shell laminated composite structures. The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system. In the global coordinate system, two smaller components of one vector, together with the smallest or second smallest component of another vector, of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables, whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell (away from non-smooth intersections) are defined as rotational variables. All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure, and thus improve the computational efficiency in the nonlinear solution of these composite shell structures. Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables, and the second derivatives of the strain energy functional with respect to local nodal variables, symmetric tangent stiffness matrices in local and global coordinate systems are obtained. To overcome shear locking, the assumed transverse shear strains obtained from the line-integration approach are employed. The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests, several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.</description><identifier>ISSN: 1526-1506</identifier><identifier>ISSN: 1526-1492</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2021.016050</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Civil engineering ; Commutativity ; Composite structures ; Coordinates ; Deformation ; Finite element analysis ; Finite element method ; Intersections ; Laminar composites ; Locking ; Nodes ; Patch tests ; Shear deformation ; Shear strain ; Shells ; Shells (structural forms) ; Stiffness matrix ; Variables</subject><ispartof>Computer modeling in engineering &amp; sciences, 2021, Vol.129 (2), p.485-518</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1aaea6ac958d45ce6ad94f7f91e6fb0287ed1efc972b39c0812a9a1b94a4978a3</citedby><cites>FETCH-LOGICAL-c316t-1aaea6ac958d45ce6ad94f7f91e6fb0287ed1efc972b39c0812a9a1b94a4978a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Li, Zhongxue</creatorcontrib><creatorcontrib>Ji, Jiawei</creatorcontrib><creatorcontrib>Vu-Quoc, Loc</creatorcontrib><creatorcontrib>A. Izzuddin, Bassam</creatorcontrib><creatorcontrib>Zhuo, Xin</creatorcontrib><title>A 3-Node Co-Rotational Triangular Finite Element for Non-Smooth, Folded and Multi-Shell Laminated Composite Structures</title><title>Computer modeling in engineering &amp; sciences</title><description>Based on the first-order shear deformation theory, a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth, folded and multi-shell laminated composite structures. The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system. In the global coordinate system, two smaller components of one vector, together with the smallest or second smallest component of another vector, of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables, whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell (away from non-smooth intersections) are defined as rotational variables. All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure, and thus improve the computational efficiency in the nonlinear solution of these composite shell structures. Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables, and the second derivatives of the strain energy functional with respect to local nodal variables, symmetric tangent stiffness matrices in local and global coordinate systems are obtained. To overcome shear locking, the assumed transverse shear strains obtained from the line-integration approach are employed. The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests, several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.</description><subject>Civil engineering</subject><subject>Commutativity</subject><subject>Composite structures</subject><subject>Coordinates</subject><subject>Deformation</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Intersections</subject><subject>Laminar composites</subject><subject>Locking</subject><subject>Nodes</subject><subject>Patch tests</subject><subject>Shear deformation</subject><subject>Shear strain</subject><subject>Shells</subject><subject>Shells (structural forms)</subject><subject>Stiffness matrix</subject><subject>Variables</subject><issn>1526-1506</issn><issn>1526-1492</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE1LAzEYhIMoWKs_wFvAq6n52M1ujmVpVagVbD2Ht9ms3ZLd1CQr-O9trQdPMzDDwDwI3TI6EVzS7MF0Nk445WxCmaQ5PUMjlnNJWE7l-T9_ia5i3FEqpCjVCH1NsSBLX1tcefLmE6TW9-DwOrTQfwwOAp63fZssnjnb2T7hxge89D1Zdd6n7T2ee1fbGkNf45fBpZasttY5vICu7SEdksp3ex-PE6sUBpOGYOM1umjARXvzp2P0Pp-tqyeyeH18rqYLYgSTiTAACxKMyss6y42VUKusKRrFrGw2lJeFrZltjCr4RihDS8ZBAduoDDJVlCDG6O60uw_-c7Ax6Z0fwuFg1DxXtOBC0OzQYqeWCT7GYBu9D20H4Vszqn_x6iNefcSrT3jFD8aRbw4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Zhongxue</creator><creator>Ji, Jiawei</creator><creator>Vu-Quoc, Loc</creator><creator>A. Izzuddin, Bassam</creator><creator>Zhuo, Xin</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2021</creationdate><title>A 3-Node Co-Rotational Triangular Finite Element for Non-Smooth, Folded and Multi-Shell Laminated Composite Structures</title><author>Li, Zhongxue ; Ji, Jiawei ; Vu-Quoc, Loc ; A. Izzuddin, Bassam ; Zhuo, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1aaea6ac958d45ce6ad94f7f91e6fb0287ed1efc972b39c0812a9a1b94a4978a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Civil engineering</topic><topic>Commutativity</topic><topic>Composite structures</topic><topic>Coordinates</topic><topic>Deformation</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Intersections</topic><topic>Laminar composites</topic><topic>Locking</topic><topic>Nodes</topic><topic>Patch tests</topic><topic>Shear deformation</topic><topic>Shear strain</topic><topic>Shells</topic><topic>Shells (structural forms)</topic><topic>Stiffness matrix</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhongxue</creatorcontrib><creatorcontrib>Ji, Jiawei</creatorcontrib><creatorcontrib>Vu-Quoc, Loc</creatorcontrib><creatorcontrib>A. Izzuddin, Bassam</creatorcontrib><creatorcontrib>Zhuo, Xin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhongxue</au><au>Ji, Jiawei</au><au>Vu-Quoc, Loc</au><au>A. Izzuddin, Bassam</au><au>Zhuo, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3-Node Co-Rotational Triangular Finite Element for Non-Smooth, Folded and Multi-Shell Laminated Composite Structures</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><date>2021</date><risdate>2021</risdate><volume>129</volume><issue>2</issue><spage>485</spage><epage>518</epage><pages>485-518</pages><issn>1526-1506</issn><issn>1526-1492</issn><eissn>1526-1506</eissn><abstract>Based on the first-order shear deformation theory, a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth, folded and multi-shell laminated composite structures. The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system. In the global coordinate system, two smaller components of one vector, together with the smallest or second smallest component of another vector, of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables, whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell (away from non-smooth intersections) are defined as rotational variables. All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure, and thus improve the computational efficiency in the nonlinear solution of these composite shell structures. Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables, and the second derivatives of the strain energy functional with respect to local nodal variables, symmetric tangent stiffness matrices in local and global coordinate systems are obtained. To overcome shear locking, the assumed transverse shear strains obtained from the line-integration approach are employed. The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests, several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmes.2021.016050</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1506
ispartof Computer modeling in engineering & sciences, 2021, Vol.129 (2), p.485-518
issn 1526-1506
1526-1492
1526-1506
language eng
recordid cdi_proquest_journals_2590723304
source Tech Science Press; EZB-FREE-00999 freely available EZB journals
subjects Civil engineering
Commutativity
Composite structures
Coordinates
Deformation
Finite element analysis
Finite element method
Intersections
Laminar composites
Locking
Nodes
Patch tests
Shear deformation
Shear strain
Shells
Shells (structural forms)
Stiffness matrix
Variables
title A 3-Node Co-Rotational Triangular Finite Element for Non-Smooth, Folded and Multi-Shell Laminated Composite Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203-Node%20Co-Rotational%20Triangular%20Finite%20Element%20for%20Non-Smooth,%20Folded%20and%20Multi-Shell%20Laminated%20Composite%20Structures&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Li,%20Zhongxue&rft.date=2021&rft.volume=129&rft.issue=2&rft.spage=485&rft.epage=518&rft.pages=485-518&rft.issn=1526-1506&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2021.016050&rft_dat=%3Cproquest_cross%3E2590723304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590723304&rft_id=info:pmid/&rfr_iscdi=true