An algebraic approach of non-self-adjoint Hamiltonians in Krein spaces

Through our series of studies, we have constructed some physical operators such as non-self-adjoint Hamiltonians H, lowering operators A, and raising operators B and their adjoint H†, A†, and B† from generalized Riesz systems. However, we cannot consider the *-algebraic structure of their operators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-11, Vol.62 (11)
1. Verfasser: Inoue, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Inoue, Hiroshi
description Through our series of studies, we have constructed some physical operators such as non-self-adjoint Hamiltonians H, lowering operators A, and raising operators B and their adjoint H†, A†, and B† from generalized Riesz systems. However, we cannot consider the *-algebraic structure of their operators because even the sum H + H† is not well-defined. Our purpose of this paper is to introduce the *-algebra structure of all their operators by defining a certain Krein space.
doi_str_mv 10.1063/5.0061797
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2590630675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590630675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9c096406ed9d417529607cb21ca7dae796ebd966739ed40d5656d410e9fb54713</originalsourceid><addsrcrecordid>eNqd0EFLwzAUB_AgCs7pwW8Q8KTQ-dI2SXMcwzlx4EXPIU1SzeiSmnSC395IB969vHf58X-PP0LXBBYEWHVPFwCMcMFP0IxAIwrOaHOKZgBlWZR105yji5R2AIQ0dT1D66XHqn-3bVROYzUMMSj9gUOHffBFsn1XKLMLzo94o_auH4N3yifsPH6ONs80KG3TJTrrVJ_s1XHP0dv64XW1KbYvj0-r5bbQlajGQmgQrAZmjTA14bQUDLhuS6IVN8pywWxrBGO8EtbUYCijLEOwomtpzUk1RzdTbv7z82DTKHfhEH0-KUsqcgHAOM3qdlI6hpSi7eQQ3V7Fb0lA_tYkqTzWlO3dZJN2oxpd8P_DXyH-QTmYrvoB8Ht0bQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590630675</pqid></control><display><type>article</type><title>An algebraic approach of non-self-adjoint Hamiltonians in Krein spaces</title><source>美国小型学会期刊集(AIP Scitation平台)</source><source>Alma/SFX Local Collection</source><creator>Inoue, Hiroshi</creator><creatorcontrib>Inoue, Hiroshi</creatorcontrib><description>Through our series of studies, we have constructed some physical operators such as non-self-adjoint Hamiltonians H, lowering operators A, and raising operators B and their adjoint H†, A†, and B† from generalized Riesz systems. However, we cannot consider the *-algebraic structure of their operators because even the sum H + H† is not well-defined. Our purpose of this paper is to introduce the *-algebra structure of all their operators by defining a certain Krein space.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0061797</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Operators (mathematics) ; Physics</subject><ispartof>Journal of mathematical physics, 2021-11, Vol.62 (11)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9c096406ed9d417529607cb21ca7dae796ebd966739ed40d5656d410e9fb54713</citedby><cites>FETCH-LOGICAL-c393t-9c096406ed9d417529607cb21ca7dae796ebd966739ed40d5656d410e9fb54713</cites><orcidid>0000-0001-5253-5144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0061797$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Inoue, Hiroshi</creatorcontrib><title>An algebraic approach of non-self-adjoint Hamiltonians in Krein spaces</title><title>Journal of mathematical physics</title><description>Through our series of studies, we have constructed some physical operators such as non-self-adjoint Hamiltonians H, lowering operators A, and raising operators B and their adjoint H†, A†, and B† from generalized Riesz systems. However, we cannot consider the *-algebraic structure of their operators because even the sum H + H† is not well-defined. Our purpose of this paper is to introduce the *-algebra structure of all their operators by defining a certain Krein space.</description><subject>Algebra</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EFLwzAUB_AgCs7pwW8Q8KTQ-dI2SXMcwzlx4EXPIU1SzeiSmnSC395IB969vHf58X-PP0LXBBYEWHVPFwCMcMFP0IxAIwrOaHOKZgBlWZR105yji5R2AIQ0dT1D66XHqn-3bVROYzUMMSj9gUOHffBFsn1XKLMLzo94o_auH4N3yifsPH6ONs80KG3TJTrrVJ_s1XHP0dv64XW1KbYvj0-r5bbQlajGQmgQrAZmjTA14bQUDLhuS6IVN8pywWxrBGO8EtbUYCijLEOwomtpzUk1RzdTbv7z82DTKHfhEH0-KUsqcgHAOM3qdlI6hpSi7eQQ3V7Fb0lA_tYkqTzWlO3dZJN2oxpd8P_DXyH-QTmYrvoB8Ht0bQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Inoue, Hiroshi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5253-5144</orcidid></search><sort><creationdate>20211101</creationdate><title>An algebraic approach of non-self-adjoint Hamiltonians in Krein spaces</title><author>Inoue, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9c096406ed9d417529607cb21ca7dae796ebd966739ed40d5656d410e9fb54713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inoue, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inoue, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algebraic approach of non-self-adjoint Hamiltonians in Krein spaces</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>62</volume><issue>11</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Through our series of studies, we have constructed some physical operators such as non-self-adjoint Hamiltonians H, lowering operators A, and raising operators B and their adjoint H†, A†, and B† from generalized Riesz systems. However, we cannot consider the *-algebraic structure of their operators because even the sum H + H† is not well-defined. Our purpose of this paper is to introduce the *-algebra structure of all their operators by defining a certain Krein space.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061797</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5253-5144</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-11, Vol.62 (11)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2590630675
source 美国小型学会期刊集(AIP Scitation平台); Alma/SFX Local Collection
subjects Algebra
Operators (mathematics)
Physics
title An algebraic approach of non-self-adjoint Hamiltonians in Krein spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algebraic%20approach%20of%20non-self-adjoint%20Hamiltonians%20in%20Krein%20spaces&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Inoue,%20Hiroshi&rft.date=2021-11-01&rft.volume=62&rft.issue=11&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0061797&rft_dat=%3Cproquest_scita%3E2590630675%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590630675&rft_id=info:pmid/&rfr_iscdi=true