Tight conformation of 2-bridge knots using superhelices
The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper,...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-11, Vol.62 (11) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 62 |
creator | Huh, Youngsik Kim, Hyoungjun Oh, Seungsang |
description | The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper, we present a conformation of 2-bridge knots by using ropelength-minimizing superhelical curves and derive an upper bound on the ropelength of 2-bridge knots. Our superhelical model of 2-bridge knots is shown to be more efficient than the standard double helical one if the iterative twisted parts are long enough. |
doi_str_mv | 10.1063/5.0059298 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2590630557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590630557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-894a13c6d20901520e60df7451178a7a06b9609876bcfed2df6d80945d152f423</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbqwn8w4Eph6k0mz6UUq0LBTV2HaR5tajsZkxnBf-9oiy4EV3fzcS7nIHSJYYKBV7dsAsAUUfIIjTBIVQrO5DEaARBSEirlKTrLeQOAsaR0hMQirNZdYWLjY9rVXYhNEX1BymUKduWK1yZ2uehzaFZF7luX1m4bjMvn6MTX2-wuDneMXmb3i-ljOX9-eJrezUtTEdGVUtEaV4ZbAgowI-A4WC8ow1jIWtTAl4qDkoIvjXeWWM-tBEWZHbCnpBqjq31um-Jb73KnN7FPzfBSE6aGxsCYGNT1XpkUc07O6zaFXZ0-NAb9tYtm-rDLYG_2NpvQfRf-we8x_ULdWv8f_pv8CWAsbuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590630557</pqid></control><display><type>article</type><title>Tight conformation of 2-bridge knots using superhelices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huh, Youngsik ; Kim, Hyoungjun ; Oh, Seungsang</creator><creatorcontrib>Huh, Youngsik ; Kim, Hyoungjun ; Oh, Seungsang</creatorcontrib><description>The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper, we present a conformation of 2-bridge knots by using ropelength-minimizing superhelical curves and derive an upper bound on the ropelength of 2-bridge knots. Our superhelical model of 2-bridge knots is shown to be more efficient than the standard double helical one if the iterative twisted parts are long enough.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0059298</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Iterative methods ; Knots ; Physics ; Strands ; Tightness ; Upper bounds</subject><ispartof>Journal of mathematical physics, 2021-11, Vol.62 (11)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-894a13c6d20901520e60df7451178a7a06b9609876bcfed2df6d80945d152f423</citedby><cites>FETCH-LOGICAL-c327t-894a13c6d20901520e60df7451178a7a06b9609876bcfed2df6d80945d152f423</cites><orcidid>0000-0003-3393-1891 ; 0000-0001-7211-2982 ; 0000-0003-4975-9977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0059298$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Huh, Youngsik</creatorcontrib><creatorcontrib>Kim, Hyoungjun</creatorcontrib><creatorcontrib>Oh, Seungsang</creatorcontrib><title>Tight conformation of 2-bridge knots using superhelices</title><title>Journal of mathematical physics</title><description>The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper, we present a conformation of 2-bridge knots by using ropelength-minimizing superhelical curves and derive an upper bound on the ropelength of 2-bridge knots. Our superhelical model of 2-bridge knots is shown to be more efficient than the standard double helical one if the iterative twisted parts are long enough.</description><subject>Iterative methods</subject><subject>Knots</subject><subject>Physics</subject><subject>Strands</subject><subject>Tightness</subject><subject>Upper bounds</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCtbqwn8w4Eph6k0mz6UUq0LBTV2HaR5tajsZkxnBf-9oiy4EV3fzcS7nIHSJYYKBV7dsAsAUUfIIjTBIVQrO5DEaARBSEirlKTrLeQOAsaR0hMQirNZdYWLjY9rVXYhNEX1BymUKduWK1yZ2uehzaFZF7luX1m4bjMvn6MTX2-wuDneMXmb3i-ljOX9-eJrezUtTEdGVUtEaV4ZbAgowI-A4WC8ow1jIWtTAl4qDkoIvjXeWWM-tBEWZHbCnpBqjq31um-Jb73KnN7FPzfBSE6aGxsCYGNT1XpkUc07O6zaFXZ0-NAb9tYtm-rDLYG_2NpvQfRf-we8x_ULdWv8f_pv8CWAsbuY</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Huh, Youngsik</creator><creator>Kim, Hyoungjun</creator><creator>Oh, Seungsang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3393-1891</orcidid><orcidid>https://orcid.org/0000-0001-7211-2982</orcidid><orcidid>https://orcid.org/0000-0003-4975-9977</orcidid></search><sort><creationdate>20211101</creationdate><title>Tight conformation of 2-bridge knots using superhelices</title><author>Huh, Youngsik ; Kim, Hyoungjun ; Oh, Seungsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-894a13c6d20901520e60df7451178a7a06b9609876bcfed2df6d80945d152f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Iterative methods</topic><topic>Knots</topic><topic>Physics</topic><topic>Strands</topic><topic>Tightness</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huh, Youngsik</creatorcontrib><creatorcontrib>Kim, Hyoungjun</creatorcontrib><creatorcontrib>Oh, Seungsang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huh, Youngsik</au><au>Kim, Hyoungjun</au><au>Oh, Seungsang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight conformation of 2-bridge knots using superhelices</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>62</volume><issue>11</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper, we present a conformation of 2-bridge knots by using ropelength-minimizing superhelical curves and derive an upper bound on the ropelength of 2-bridge knots. Our superhelical model of 2-bridge knots is shown to be more efficient than the standard double helical one if the iterative twisted parts are long enough.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0059298</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3393-1891</orcidid><orcidid>https://orcid.org/0000-0001-7211-2982</orcidid><orcidid>https://orcid.org/0000-0003-4975-9977</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2021-11, Vol.62 (11) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2590630557 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Iterative methods Knots Physics Strands Tightness Upper bounds |
title | Tight conformation of 2-bridge knots using superhelices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20conformation%20of%202-bridge%20knots%20using%20superhelices&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Huh,%20Youngsik&rft.date=2021-11-01&rft.volume=62&rft.issue=11&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0059298&rft_dat=%3Cproquest_scita%3E2590630557%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590630557&rft_id=info:pmid/&rfr_iscdi=true |