Tight conformation of 2-bridge knots using superhelices

The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-11, Vol.62 (11)
Hauptverfasser: Huh, Youngsik, Kim, Hyoungjun, Oh, Seungsang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Huh, Youngsik
Kim, Hyoungjun
Oh, Seungsang
description The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper, we present a conformation of 2-bridge knots by using ropelength-minimizing superhelical curves and derive an upper bound on the ropelength of 2-bridge knots. Our superhelical model of 2-bridge knots is shown to be more efficient than the standard double helical one if the iterative twisted parts are long enough.
doi_str_mv 10.1063/5.0059298
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2590630557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590630557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-894a13c6d20901520e60df7451178a7a06b9609876bcfed2df6d80945d152f423</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbqwn8w4Eph6k0mz6UUq0LBTV2HaR5tajsZkxnBf-9oiy4EV3fzcS7nIHSJYYKBV7dsAsAUUfIIjTBIVQrO5DEaARBSEirlKTrLeQOAsaR0hMQirNZdYWLjY9rVXYhNEX1BymUKduWK1yZ2uehzaFZF7luX1m4bjMvn6MTX2-wuDneMXmb3i-ljOX9-eJrezUtTEdGVUtEaV4ZbAgowI-A4WC8ow1jIWtTAl4qDkoIvjXeWWM-tBEWZHbCnpBqjq31um-Jb73KnN7FPzfBSE6aGxsCYGNT1XpkUc07O6zaFXZ0-NAb9tYtm-rDLYG_2NpvQfRf-we8x_ULdWv8f_pv8CWAsbuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590630557</pqid></control><display><type>article</type><title>Tight conformation of 2-bridge knots using superhelices</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huh, Youngsik ; Kim, Hyoungjun ; Oh, Seungsang</creator><creatorcontrib>Huh, Youngsik ; Kim, Hyoungjun ; Oh, Seungsang</creatorcontrib><description>The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper, we present a conformation of 2-bridge knots by using ropelength-minimizing superhelical curves and derive an upper bound on the ropelength of 2-bridge knots. Our superhelical model of 2-bridge knots is shown to be more efficient than the standard double helical one if the iterative twisted parts are long enough.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0059298</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Iterative methods ; Knots ; Physics ; Strands ; Tightness ; Upper bounds</subject><ispartof>Journal of mathematical physics, 2021-11, Vol.62 (11)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-894a13c6d20901520e60df7451178a7a06b9609876bcfed2df6d80945d152f423</citedby><cites>FETCH-LOGICAL-c327t-894a13c6d20901520e60df7451178a7a06b9609876bcfed2df6d80945d152f423</cites><orcidid>0000-0003-3393-1891 ; 0000-0001-7211-2982 ; 0000-0003-4975-9977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0059298$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Huh, Youngsik</creatorcontrib><creatorcontrib>Kim, Hyoungjun</creatorcontrib><creatorcontrib>Oh, Seungsang</creatorcontrib><title>Tight conformation of 2-bridge knots using superhelices</title><title>Journal of mathematical physics</title><description>The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper, we present a conformation of 2-bridge knots by using ropelength-minimizing superhelical curves and derive an upper bound on the ropelength of 2-bridge knots. Our superhelical model of 2-bridge knots is shown to be more efficient than the standard double helical one if the iterative twisted parts are long enough.</description><subject>Iterative methods</subject><subject>Knots</subject><subject>Physics</subject><subject>Strands</subject><subject>Tightness</subject><subject>Upper bounds</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCtbqwn8w4Eph6k0mz6UUq0LBTV2HaR5tajsZkxnBf-9oiy4EV3fzcS7nIHSJYYKBV7dsAsAUUfIIjTBIVQrO5DEaARBSEirlKTrLeQOAsaR0hMQirNZdYWLjY9rVXYhNEX1BymUKduWK1yZ2uehzaFZF7luX1m4bjMvn6MTX2-wuDneMXmb3i-ljOX9-eJrezUtTEdGVUtEaV4ZbAgowI-A4WC8ow1jIWtTAl4qDkoIvjXeWWM-tBEWZHbCnpBqjq31um-Jb73KnN7FPzfBSE6aGxsCYGNT1XpkUc07O6zaFXZ0-NAb9tYtm-rDLYG_2NpvQfRf-we8x_ULdWv8f_pv8CWAsbuY</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Huh, Youngsik</creator><creator>Kim, Hyoungjun</creator><creator>Oh, Seungsang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3393-1891</orcidid><orcidid>https://orcid.org/0000-0001-7211-2982</orcidid><orcidid>https://orcid.org/0000-0003-4975-9977</orcidid></search><sort><creationdate>20211101</creationdate><title>Tight conformation of 2-bridge knots using superhelices</title><author>Huh, Youngsik ; Kim, Hyoungjun ; Oh, Seungsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-894a13c6d20901520e60df7451178a7a06b9609876bcfed2df6d80945d152f423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Iterative methods</topic><topic>Knots</topic><topic>Physics</topic><topic>Strands</topic><topic>Tightness</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huh, Youngsik</creatorcontrib><creatorcontrib>Kim, Hyoungjun</creatorcontrib><creatorcontrib>Oh, Seungsang</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huh, Youngsik</au><au>Kim, Hyoungjun</au><au>Oh, Seungsang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight conformation of 2-bridge knots using superhelices</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>62</volume><issue>11</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The ropelength is a mathematical quantity that regulates the tightness of flexible strands in the three-dimensional space. The superhelical conformation of long twisted strands is known to be more efficient in terms of ropelength compared with the circular double helical conformation. In this paper, we present a conformation of 2-bridge knots by using ropelength-minimizing superhelical curves and derive an upper bound on the ropelength of 2-bridge knots. Our superhelical model of 2-bridge knots is shown to be more efficient than the standard double helical one if the iterative twisted parts are long enough.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0059298</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3393-1891</orcidid><orcidid>https://orcid.org/0000-0001-7211-2982</orcidid><orcidid>https://orcid.org/0000-0003-4975-9977</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-11, Vol.62 (11)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2590630557
source AIP Journals Complete; Alma/SFX Local Collection
subjects Iterative methods
Knots
Physics
Strands
Tightness
Upper bounds
title Tight conformation of 2-bridge knots using superhelices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20conformation%20of%202-bridge%20knots%20using%20superhelices&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Huh,%20Youngsik&rft.date=2021-11-01&rft.volume=62&rft.issue=11&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0059298&rft_dat=%3Cproquest_scita%3E2590630557%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590630557&rft_id=info:pmid/&rfr_iscdi=true