Numerical solution for an inverse variational problem

In the present work, firstly, we use a minimax equality to prove the existence of a solution to a certain system of varitional equations providing a numerical approximation of such a solution. Then, we propose a numerical method to solve a collage-type inverse problem associated with the correspondi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering 2021-12, Vol.22 (4), p.2537-2552
Hauptverfasser: Garralda-Guillem, A. I., Montiel López, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2552
container_issue 4
container_start_page 2537
container_title Optimization and engineering
container_volume 22
creator Garralda-Guillem, A. I.
Montiel López, P.
description In the present work, firstly, we use a minimax equality to prove the existence of a solution to a certain system of varitional equations providing a numerical approximation of such a solution. Then, we propose a numerical method to solve a collage-type inverse problem associated with the corresponding system, and illustrate the behaviour of the method with a numerical example.
doi_str_mv 10.1007/s11081-021-09671-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2590159330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590159330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f6da2c5da6f4102b96dcd12bd4c445ca165acdacc6126e47ba11f22873b4abb03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52gmn7tHKWqFohc9h0k2K1v2oybdgv_e1BW8eRhmYJ535uUl5BrYLTBm7hIAK4EynqvSBqg5IQtQRlBecXmaZ1FWVErOzslFSlvGQCteLoh6mfoQW49dkcZu2rfjUDRjLHAo2uEQYgrFAWOLx0VmdnF0XegvyVmDXQpXv31J3h8f3lZrunl9el7db6gXWuxpo2vkXtWoGwmMu0rXvgbuaumlVB6zB_Q1eq-B6yCNQ4CG89IIJ9E5JpbkZr6b_35OIe3tdpxiNpIsVxUDVQlxpPhM-TimFENjd7HtMX5ZYPYYj53jsTke-xOPNVkkZlHK8PAR4t_pf1Tff85oOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590159330</pqid></control><display><type>article</type><title>Numerical solution for an inverse variational problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Garralda-Guillem, A. I. ; Montiel López, P.</creator><creatorcontrib>Garralda-Guillem, A. I. ; Montiel López, P.</creatorcontrib><description>In the present work, firstly, we use a minimax equality to prove the existence of a solution to a certain system of varitional equations providing a numerical approximation of such a solution. Then, we propose a numerical method to solve a collage-type inverse problem associated with the corresponding system, and illustrate the behaviour of the method with a numerical example.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-021-09671-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control ; Engineering ; Environmental Management ; Financial Engineering ; Inverse problems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Minimax technique ; Numerical methods ; Operations Research/Decision Theory ; Optimization ; Research Article ; Systems Theory</subject><ispartof>Optimization and engineering, 2021-12, Vol.22 (4), p.2537-2552</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f6da2c5da6f4102b96dcd12bd4c445ca165acdacc6126e47ba11f22873b4abb03</citedby><cites>FETCH-LOGICAL-c363t-f6da2c5da6f4102b96dcd12bd4c445ca165acdacc6126e47ba11f22873b4abb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-021-09671-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-021-09671-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Garralda-Guillem, A. I.</creatorcontrib><creatorcontrib>Montiel López, P.</creatorcontrib><title>Numerical solution for an inverse variational problem</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>In the present work, firstly, we use a minimax equality to prove the existence of a solution to a certain system of varitional equations providing a numerical approximation of such a solution. Then, we propose a numerical method to solve a collage-type inverse problem associated with the corresponding system, and illustrate the behaviour of the method with a numerical example.</description><subject>Control</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimax technique</subject><subject>Numerical methods</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Research Article</subject><subject>Systems Theory</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52gmn7tHKWqFohc9h0k2K1v2oybdgv_e1BW8eRhmYJ535uUl5BrYLTBm7hIAK4EynqvSBqg5IQtQRlBecXmaZ1FWVErOzslFSlvGQCteLoh6mfoQW49dkcZu2rfjUDRjLHAo2uEQYgrFAWOLx0VmdnF0XegvyVmDXQpXv31J3h8f3lZrunl9el7db6gXWuxpo2vkXtWoGwmMu0rXvgbuaumlVB6zB_Q1eq-B6yCNQ4CG89IIJ9E5JpbkZr6b_35OIe3tdpxiNpIsVxUDVQlxpPhM-TimFENjd7HtMX5ZYPYYj53jsTke-xOPNVkkZlHK8PAR4t_pf1Tff85oOg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Garralda-Guillem, A. I.</creator><creator>Montiel López, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20211201</creationdate><title>Numerical solution for an inverse variational problem</title><author>Garralda-Guillem, A. I. ; Montiel López, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f6da2c5da6f4102b96dcd12bd4c445ca165acdacc6126e47ba11f22873b4abb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Control</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimax technique</topic><topic>Numerical methods</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Research Article</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garralda-Guillem, A. I.</creatorcontrib><creatorcontrib>Montiel López, P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garralda-Guillem, A. I.</au><au>Montiel López, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution for an inverse variational problem</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>22</volume><issue>4</issue><spage>2537</spage><epage>2552</epage><pages>2537-2552</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>In the present work, firstly, we use a minimax equality to prove the existence of a solution to a certain system of varitional equations providing a numerical approximation of such a solution. Then, we propose a numerical method to solve a collage-type inverse problem associated with the corresponding system, and illustrate the behaviour of the method with a numerical example.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-021-09671-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2021-12, Vol.22 (4), p.2537-2552
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_journals_2590159330
source SpringerLink Journals - AutoHoldings
subjects Control
Engineering
Environmental Management
Financial Engineering
Inverse problems
Mathematical analysis
Mathematics
Mathematics and Statistics
Minimax technique
Numerical methods
Operations Research/Decision Theory
Optimization
Research Article
Systems Theory
title Numerical solution for an inverse variational problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20for%20an%20inverse%20variational%20problem&rft.jtitle=Optimization%20and%20engineering&rft.au=Garralda-Guillem,%20A.%20I.&rft.date=2021-12-01&rft.volume=22&rft.issue=4&rft.spage=2537&rft.epage=2552&rft.pages=2537-2552&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-021-09671-7&rft_dat=%3Cproquest_cross%3E2590159330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590159330&rft_id=info:pmid/&rfr_iscdi=true