Power values of quadratic polynomials with generalized skew derivations on Lie ideals

Let R be a prime ring of characteristic different from 2, Z ( R ) its center, Q its right Martindale quotient ring, C its extended centroid, F a generalized skew derivation of R , L a non-central Lie ideal of R and n ≥ 1 a fixed integer such that [ F ( x ) , y ] n = [ x , F ( y ) ] n , for all x , y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beiträge zur Algebra und Geometrie 2021-12, Vol.62 (4), p.893-905
Hauptverfasser: Ali, Asma, De Filippis, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 4
container_start_page 893
container_title Beiträge zur Algebra und Geometrie
container_volume 62
creator Ali, Asma
De Filippis, Vincenzo
description Let R be a prime ring of characteristic different from 2, Z ( R ) its center, Q its right Martindale quotient ring, C its extended centroid, F a generalized skew derivation of R , L a non-central Lie ideal of R and n ≥ 1 a fixed integer such that [ F ( x ) , y ] n = [ x , F ( y ) ] n , for all x , y ∈ L . Then there exists λ ∈ C such that F ( x ) = λ x , for any x ∈ R , unless R is an order in a 4-dimensional central simple algebra.
doi_str_mv 10.1007/s13366-020-00550-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2590158505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590158505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-329b4e70b9d262ece0511577498bcb65838a3969b7ad4721ec2bfe8dde18cbf93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxA6wssQ6M7Th2lqjiJVWCBV1bSTwpLmnc2mmr8vUYgsSO1d2ce0dzCLlicMMA1G1kQhRFBhwyACkhE0dkwlnJMhBaHJMJMKGzXHN2Ss5iXAJAoZSakPmr32Ogu6rbYqS-pZttZUM1uIaufXfo_cpVXaR7N7zTBfYYqs59oqXxA_fUYnC7xPo-VXs6c0idxcRfkJM2BV7-5jmZP9y_TZ-y2cvj8_RuljVcwZAJXtY5KqhLywuODYJkTCqVl7pu6kJqoStRFmWtKpsrzrDhdYvaWmS6qdtSnJPrcXcd_CY9MJil34Y-nTRclsCkliATxUeqCT7GgK1ZB7eqwsEwMN_6zKjPJH3mR58RqSTGUkxwv8DwN_1P6wtXH3Nq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590158505</pqid></control><display><type>article</type><title>Power values of quadratic polynomials with generalized skew derivations on Lie ideals</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ali, Asma ; De Filippis, Vincenzo</creator><creatorcontrib>Ali, Asma ; De Filippis, Vincenzo</creatorcontrib><description>Let R be a prime ring of characteristic different from 2, Z ( R ) its center, Q its right Martindale quotient ring, C its extended centroid, F a generalized skew derivation of R , L a non-central Lie ideal of R and n ≥ 1 a fixed integer such that [ F ( x ) , y ] n = [ x , F ( y ) ] n , for all x , y ∈ L . Then there exists λ ∈ C such that F ( x ) = λ x , for any x ∈ R , unless R is an order in a 4-dimensional central simple algebra.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-020-00550-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Centroids ; Convex and Discrete Geometry ; Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Polynomials ; Quotients</subject><ispartof>Beiträge zur Algebra und Geometrie, 2021-12, Vol.62 (4), p.893-905</ispartof><rights>The Managing Editors 2021</rights><rights>The Managing Editors 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-329b4e70b9d262ece0511577498bcb65838a3969b7ad4721ec2bfe8dde18cbf93</cites><orcidid>0000-0002-3213-1254</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13366-020-00550-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13366-020-00550-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Ali, Asma</creatorcontrib><creatorcontrib>De Filippis, Vincenzo</creatorcontrib><title>Power values of quadratic polynomials with generalized skew derivations on Lie ideals</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>Let R be a prime ring of characteristic different from 2, Z ( R ) its center, Q its right Martindale quotient ring, C its extended centroid, F a generalized skew derivation of R , L a non-central Lie ideal of R and n ≥ 1 a fixed integer such that [ F ( x ) , y ] n = [ x , F ( y ) ] n , for all x , y ∈ L . Then there exists λ ∈ C such that F ( x ) = λ x , for any x ∈ R , unless R is an order in a 4-dimensional central simple algebra.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Centroids</subject><subject>Convex and Discrete Geometry</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Quotients</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxA6wssQ6M7Th2lqjiJVWCBV1bSTwpLmnc2mmr8vUYgsSO1d2ce0dzCLlicMMA1G1kQhRFBhwyACkhE0dkwlnJMhBaHJMJMKGzXHN2Ss5iXAJAoZSakPmr32Ogu6rbYqS-pZttZUM1uIaufXfo_cpVXaR7N7zTBfYYqs59oqXxA_fUYnC7xPo-VXs6c0idxcRfkJM2BV7-5jmZP9y_TZ-y2cvj8_RuljVcwZAJXtY5KqhLywuODYJkTCqVl7pu6kJqoStRFmWtKpsrzrDhdYvaWmS6qdtSnJPrcXcd_CY9MJil34Y-nTRclsCkliATxUeqCT7GgK1ZB7eqwsEwMN_6zKjPJH3mR58RqSTGUkxwv8DwN_1P6wtXH3Nq</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ali, Asma</creator><creator>De Filippis, Vincenzo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3213-1254</orcidid></search><sort><creationdate>20211201</creationdate><title>Power values of quadratic polynomials with generalized skew derivations on Lie ideals</title><author>Ali, Asma ; De Filippis, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-329b4e70b9d262ece0511577498bcb65838a3969b7ad4721ec2bfe8dde18cbf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Centroids</topic><topic>Convex and Discrete Geometry</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Asma</creatorcontrib><creatorcontrib>De Filippis, Vincenzo</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Asma</au><au>De Filippis, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power values of quadratic polynomials with generalized skew derivations on Lie ideals</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>4</issue><spage>893</spage><epage>905</epage><pages>893-905</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>Let R be a prime ring of characteristic different from 2, Z ( R ) its center, Q its right Martindale quotient ring, C its extended centroid, F a generalized skew derivation of R , L a non-central Lie ideal of R and n ≥ 1 a fixed integer such that [ F ( x ) , y ] n = [ x , F ( y ) ] n , for all x , y ∈ L . Then there exists λ ∈ C such that F ( x ) = λ x , for any x ∈ R , unless R is an order in a 4-dimensional central simple algebra.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-020-00550-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3213-1254</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0138-4821
ispartof Beiträge zur Algebra und Geometrie, 2021-12, Vol.62 (4), p.893-905
issn 0138-4821
2191-0383
language eng
recordid cdi_proquest_journals_2590158505
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algebraic Geometry
Centroids
Convex and Discrete Geometry
Geometry
Mathematics
Mathematics and Statistics
Original Paper
Polynomials
Quotients
title Power values of quadratic polynomials with generalized skew derivations on Lie ideals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20values%20of%20quadratic%20polynomials%20with%20generalized%20skew%20derivations%20on%20Lie%20ideals&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=Ali,%20Asma&rft.date=2021-12-01&rft.volume=62&rft.issue=4&rft.spage=893&rft.epage=905&rft.pages=893-905&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-020-00550-3&rft_dat=%3Cproquest_cross%3E2590158505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2590158505&rft_id=info:pmid/&rfr_iscdi=true