A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology

The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2021, Vol.2021, p.1-6
Hauptverfasser: Xiao, Ying, Wang, Deyan, Gao, Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title Scientific programming
container_volume 2021
creator Xiao, Ying
Wang, Deyan
Gao, Ya
description The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and generate the node order randomly to obtain the best result in multiple random node order. Second, a genetic incremental K2 learning method is used to learn the Bayesian network structure. The training dataset is divided into two groups, and the standard K2 algorithm is used to find the optimal value for the first set of training data; simultaneously, three similar suboptimal values are recorded. To avoid falling into the local optimum, these four optimal values are mutated into a new genetic optimal value. When the second set of training data is used, only the best Bayesian network structure within the five abovementioned optimal values is identified. The experimental results indicate that the genetic incremental K2 algorithm based on random attribute order achieves higher computational efficiency and accuracy than the standard algorithm. The new algorithm is especially suitable for building Bayesian network structures in cases where the dataset and number of nodes are large.
doi_str_mv 10.1155/2021/4743752
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2589597944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2589597944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2092-deaf7272fc06e3efba9f2f2e7c2d4cbb429a3f9b5f11455230304cfe10d5786e3</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4soOKdvfoCAj1qXpIltHqfoHG4OdAPfSppe1swumWnK2Jsf3Y7t2Ze7-8Pv7uAXRdcE3xPC-YBiSgYsZUnK6UnUI1nKY0HE12k3Y57FgjJ2Hl00zQpjkhGMe9HvEE1dYWpAj3IHjZEWvUPYOv-NPoNvVWg9oAlIb41doimEypVo0ezDCCwEo9DYKg9rsEHW6I2iYb103oRqjaQt0UdX3BoNQ_CmaAOgmS_BozmoyrraLXeX0ZmWdQNXx96PFi_P86fXeDIbjZ-Gk1hRLGhcgtQpTalW-AES0IUUmmoKqaIlU0XBqJCJFgXXhDDOaYITzJQGgkueZt1KP7o53N1499NCE_KVa73tXuaUZ4KLVDDWUXcHSnnXNB50vvFmLf0uJzjfO873jvOj4w6_PeCVsaXcmv_pPylKfK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589597944</pqid></control><display><type>article</type><title>A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Xiao, Ying ; Wang, Deyan ; Gao, Ya</creator><contributor>Ni, Tongguang ; Tongguang Ni</contributor><creatorcontrib>Xiao, Ying ; Wang, Deyan ; Gao, Ya ; Ni, Tongguang ; Tongguang Ni</creatorcontrib><description>The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and generate the node order randomly to obtain the best result in multiple random node order. Second, a genetic incremental K2 learning method is used to learn the Bayesian network structure. The training dataset is divided into two groups, and the standard K2 algorithm is used to find the optimal value for the first set of training data; simultaneously, three similar suboptimal values are recorded. To avoid falling into the local optimum, these four optimal values are mutated into a new genetic optimal value. When the second set of training data is used, only the best Bayesian network structure within the five abovementioned optimal values is identified. The experimental results indicate that the genetic incremental K2 algorithm based on random attribute order achieves higher computational efficiency and accuracy than the standard algorithm. The new algorithm is especially suitable for building Bayesian network structures in cases where the dataset and number of nodes are large.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/4743752</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Bayesian analysis ; Datasets ; Efficiency ; Fault diagnosis ; Genetic algorithms ; Knowledge ; Machine learning ; Nodes ; Optimization ; Optimization algorithms ; Random variables ; Training</subject><ispartof>Scientific programming, 2021, Vol.2021, p.1-6</ispartof><rights>Copyright © 2021 Ying Xiao et al.</rights><rights>Copyright © 2021 Ying Xiao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2092-deaf7272fc06e3efba9f2f2e7c2d4cbb429a3f9b5f11455230304cfe10d5786e3</cites><orcidid>0000-0002-7910-3066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Ni, Tongguang</contributor><contributor>Tongguang Ni</contributor><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>Wang, Deyan</creatorcontrib><creatorcontrib>Gao, Ya</creatorcontrib><title>A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology</title><title>Scientific programming</title><description>The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and generate the node order randomly to obtain the best result in multiple random node order. Second, a genetic incremental K2 learning method is used to learn the Bayesian network structure. The training dataset is divided into two groups, and the standard K2 algorithm is used to find the optimal value for the first set of training data; simultaneously, three similar suboptimal values are recorded. To avoid falling into the local optimum, these four optimal values are mutated into a new genetic optimal value. When the second set of training data is used, only the best Bayesian network structure within the five abovementioned optimal values is identified. The experimental results indicate that the genetic incremental K2 algorithm based on random attribute order achieves higher computational efficiency and accuracy than the standard algorithm. The new algorithm is especially suitable for building Bayesian network structures in cases where the dataset and number of nodes are large.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Fault diagnosis</subject><subject>Genetic algorithms</subject><subject>Knowledge</subject><subject>Machine learning</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Random variables</subject><subject>Training</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kFFLwzAQx4soOKdvfoCAj1qXpIltHqfoHG4OdAPfSppe1swumWnK2Jsf3Y7t2Ze7-8Pv7uAXRdcE3xPC-YBiSgYsZUnK6UnUI1nKY0HE12k3Y57FgjJ2Hl00zQpjkhGMe9HvEE1dYWpAj3IHjZEWvUPYOv-NPoNvVWg9oAlIb41doimEypVo0ezDCCwEo9DYKg9rsEHW6I2iYb103oRqjaQt0UdX3BoNQ_CmaAOgmS_BozmoyrraLXeX0ZmWdQNXx96PFi_P86fXeDIbjZ-Gk1hRLGhcgtQpTalW-AES0IUUmmoKqaIlU0XBqJCJFgXXhDDOaYITzJQGgkueZt1KP7o53N1499NCE_KVa73tXuaUZ4KLVDDWUXcHSnnXNB50vvFmLf0uJzjfO873jvOj4w6_PeCVsaXcmv_pPylKfK8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xiao, Ying</creator><creator>Wang, Deyan</creator><creator>Gao, Ya</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7910-3066</orcidid></search><sort><creationdate>2021</creationdate><title>A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology</title><author>Xiao, Ying ; Wang, Deyan ; Gao, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2092-deaf7272fc06e3efba9f2f2e7c2d4cbb429a3f9b5f11455230304cfe10d5786e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Fault diagnosis</topic><topic>Genetic algorithms</topic><topic>Knowledge</topic><topic>Machine learning</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Random variables</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>Wang, Deyan</creatorcontrib><creatorcontrib>Gao, Ya</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Ying</au><au>Wang, Deyan</au><au>Gao, Ya</au><au>Ni, Tongguang</au><au>Tongguang Ni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology</atitle><jtitle>Scientific programming</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and generate the node order randomly to obtain the best result in multiple random node order. Second, a genetic incremental K2 learning method is used to learn the Bayesian network structure. The training dataset is divided into two groups, and the standard K2 algorithm is used to find the optimal value for the first set of training data; simultaneously, three similar suboptimal values are recorded. To avoid falling into the local optimum, these four optimal values are mutated into a new genetic optimal value. When the second set of training data is used, only the best Bayesian network structure within the five abovementioned optimal values is identified. The experimental results indicate that the genetic incremental K2 algorithm based on random attribute order achieves higher computational efficiency and accuracy than the standard algorithm. The new algorithm is especially suitable for building Bayesian network structures in cases where the dataset and number of nodes are large.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/4743752</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7910-3066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2021, Vol.2021, p.1-6
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2589597944
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Accuracy
Algorithms
Bayesian analysis
Datasets
Efficiency
Fault diagnosis
Genetic algorithms
Knowledge
Machine learning
Nodes
Optimization
Optimization algorithms
Random variables
Training
title A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mobile%20Bayesian%20Network%20Structure%20Learning%20Method%20Using%20Genetic%20Incremental%20K2%20Algorithm%20and%20Random%20Attribute%20Order%20Technology&rft.jtitle=Scientific%20programming&rft.au=Xiao,%20Ying&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/4743752&rft_dat=%3Cproquest_cross%3E2589597944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589597944&rft_id=info:pmid/&rfr_iscdi=true