A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology
The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2021, Vol.2021, p.1-6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2021 |
creator | Xiao, Ying Wang, Deyan Gao, Ya |
description | The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and generate the node order randomly to obtain the best result in multiple random node order. Second, a genetic incremental K2 learning method is used to learn the Bayesian network structure. The training dataset is divided into two groups, and the standard K2 algorithm is used to find the optimal value for the first set of training data; simultaneously, three similar suboptimal values are recorded. To avoid falling into the local optimum, these four optimal values are mutated into a new genetic optimal value. When the second set of training data is used, only the best Bayesian network structure within the five abovementioned optimal values is identified. The experimental results indicate that the genetic incremental K2 algorithm based on random attribute order achieves higher computational efficiency and accuracy than the standard algorithm. The new algorithm is especially suitable for building Bayesian network structures in cases where the dataset and number of nodes are large. |
doi_str_mv | 10.1155/2021/4743752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2589597944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2589597944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2092-deaf7272fc06e3efba9f2f2e7c2d4cbb429a3f9b5f11455230304cfe10d5786e3</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4soOKdvfoCAj1qXpIltHqfoHG4OdAPfSppe1swumWnK2Jsf3Y7t2Ze7-8Pv7uAXRdcE3xPC-YBiSgYsZUnK6UnUI1nKY0HE12k3Y57FgjJ2Hl00zQpjkhGMe9HvEE1dYWpAj3IHjZEWvUPYOv-NPoNvVWg9oAlIb41doimEypVo0ezDCCwEo9DYKg9rsEHW6I2iYb103oRqjaQt0UdX3BoNQ_CmaAOgmS_BozmoyrraLXeX0ZmWdQNXx96PFi_P86fXeDIbjZ-Gk1hRLGhcgtQpTalW-AES0IUUmmoKqaIlU0XBqJCJFgXXhDDOaYITzJQGgkueZt1KP7o53N1499NCE_KVa73tXuaUZ4KLVDDWUXcHSnnXNB50vvFmLf0uJzjfO873jvOj4w6_PeCVsaXcmv_pPylKfK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589597944</pqid></control><display><type>article</type><title>A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Xiao, Ying ; Wang, Deyan ; Gao, Ya</creator><contributor>Ni, Tongguang ; Tongguang Ni</contributor><creatorcontrib>Xiao, Ying ; Wang, Deyan ; Gao, Ya ; Ni, Tongguang ; Tongguang Ni</creatorcontrib><description>The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and generate the node order randomly to obtain the best result in multiple random node order. Second, a genetic incremental K2 learning method is used to learn the Bayesian network structure. The training dataset is divided into two groups, and the standard K2 algorithm is used to find the optimal value for the first set of training data; simultaneously, three similar suboptimal values are recorded. To avoid falling into the local optimum, these four optimal values are mutated into a new genetic optimal value. When the second set of training data is used, only the best Bayesian network structure within the five abovementioned optimal values is identified. The experimental results indicate that the genetic incremental K2 algorithm based on random attribute order achieves higher computational efficiency and accuracy than the standard algorithm. The new algorithm is especially suitable for building Bayesian network structures in cases where the dataset and number of nodes are large.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2021/4743752</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Bayesian analysis ; Datasets ; Efficiency ; Fault diagnosis ; Genetic algorithms ; Knowledge ; Machine learning ; Nodes ; Optimization ; Optimization algorithms ; Random variables ; Training</subject><ispartof>Scientific programming, 2021, Vol.2021, p.1-6</ispartof><rights>Copyright © 2021 Ying Xiao et al.</rights><rights>Copyright © 2021 Ying Xiao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2092-deaf7272fc06e3efba9f2f2e7c2d4cbb429a3f9b5f11455230304cfe10d5786e3</cites><orcidid>0000-0002-7910-3066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Ni, Tongguang</contributor><contributor>Tongguang Ni</contributor><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>Wang, Deyan</creatorcontrib><creatorcontrib>Gao, Ya</creatorcontrib><title>A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology</title><title>Scientific programming</title><description>The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and generate the node order randomly to obtain the best result in multiple random node order. Second, a genetic incremental K2 learning method is used to learn the Bayesian network structure. The training dataset is divided into two groups, and the standard K2 algorithm is used to find the optimal value for the first set of training data; simultaneously, three similar suboptimal values are recorded. To avoid falling into the local optimum, these four optimal values are mutated into a new genetic optimal value. When the second set of training data is used, only the best Bayesian network structure within the five abovementioned optimal values is identified. The experimental results indicate that the genetic incremental K2 algorithm based on random attribute order achieves higher computational efficiency and accuracy than the standard algorithm. The new algorithm is especially suitable for building Bayesian network structures in cases where the dataset and number of nodes are large.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Datasets</subject><subject>Efficiency</subject><subject>Fault diagnosis</subject><subject>Genetic algorithms</subject><subject>Knowledge</subject><subject>Machine learning</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Random variables</subject><subject>Training</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kFFLwzAQx4soOKdvfoCAj1qXpIltHqfoHG4OdAPfSppe1swumWnK2Jsf3Y7t2Ze7-8Pv7uAXRdcE3xPC-YBiSgYsZUnK6UnUI1nKY0HE12k3Y57FgjJ2Hl00zQpjkhGMe9HvEE1dYWpAj3IHjZEWvUPYOv-NPoNvVWg9oAlIb41doimEypVo0ezDCCwEo9DYKg9rsEHW6I2iYb103oRqjaQt0UdX3BoNQ_CmaAOgmS_BozmoyrraLXeX0ZmWdQNXx96PFi_P86fXeDIbjZ-Gk1hRLGhcgtQpTalW-AES0IUUmmoKqaIlU0XBqJCJFgXXhDDOaYITzJQGgkueZt1KP7o53N1499NCE_KVa73tXuaUZ4KLVDDWUXcHSnnXNB50vvFmLf0uJzjfO873jvOj4w6_PeCVsaXcmv_pPylKfK8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xiao, Ying</creator><creator>Wang, Deyan</creator><creator>Gao, Ya</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7910-3066</orcidid></search><sort><creationdate>2021</creationdate><title>A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology</title><author>Xiao, Ying ; Wang, Deyan ; Gao, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2092-deaf7272fc06e3efba9f2f2e7c2d4cbb429a3f9b5f11455230304cfe10d5786e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Datasets</topic><topic>Efficiency</topic><topic>Fault diagnosis</topic><topic>Genetic algorithms</topic><topic>Knowledge</topic><topic>Machine learning</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Random variables</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Ying</creatorcontrib><creatorcontrib>Wang, Deyan</creatorcontrib><creatorcontrib>Gao, Ya</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Ying</au><au>Wang, Deyan</au><au>Gao, Ya</au><au>Ni, Tongguang</au><au>Tongguang Ni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology</atitle><jtitle>Scientific programming</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>The application of existing datasets to construct a probabilistic network has always been the primary research focus for mobile Bayesian networks, particularly when the dataset size is large. In this study, we improve the K2 algorithm. First, we relax the K2 algorithm requirements for node order and generate the node order randomly to obtain the best result in multiple random node order. Second, a genetic incremental K2 learning method is used to learn the Bayesian network structure. The training dataset is divided into two groups, and the standard K2 algorithm is used to find the optimal value for the first set of training data; simultaneously, three similar suboptimal values are recorded. To avoid falling into the local optimum, these four optimal values are mutated into a new genetic optimal value. When the second set of training data is used, only the best Bayesian network structure within the five abovementioned optimal values is identified. The experimental results indicate that the genetic incremental K2 algorithm based on random attribute order achieves higher computational efficiency and accuracy than the standard algorithm. The new algorithm is especially suitable for building Bayesian network structures in cases where the dataset and number of nodes are large.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/4743752</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7910-3066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2021, Vol.2021, p.1-6 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2589597944 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Bayesian analysis Datasets Efficiency Fault diagnosis Genetic algorithms Knowledge Machine learning Nodes Optimization Optimization algorithms Random variables Training |
title | A Mobile Bayesian Network Structure Learning Method Using Genetic Incremental K2 Algorithm and Random Attribute Order Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mobile%20Bayesian%20Network%20Structure%20Learning%20Method%20Using%20Genetic%20Incremental%20K2%20Algorithm%20and%20Random%20Attribute%20Order%20Technology&rft.jtitle=Scientific%20programming&rft.au=Xiao,%20Ying&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2021/4743752&rft_dat=%3Cproquest_cross%3E2589597944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589597944&rft_id=info:pmid/&rfr_iscdi=true |