Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning
The IoT sensor applications have grown in extreme numbers, generating a large amount of data, and it requires very effective data analysis procedures. However, the different IoT infrastructures and IoT sensor device layers possess protocol limitations in transmitting and receiving messages which gen...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-10, Vol.2021, p.1-16 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Rajawat, Anand Singh Bedi, Pradeep Goyal, S. B. Alharbi, Adel R. Aljaedi, Amer Jamal, Sajjad Shaukat Shukla, Piyush Kumar |
description | The IoT sensor applications have grown in extreme numbers, generating a large amount of data, and it requires very effective data analysis procedures. However, the different IoT infrastructures and IoT sensor device layers possess protocol limitations in transmitting and receiving messages which generate obstacles in developing the smart IoT sensor applications. This difficulty prohibited existing IoT sensor implementations from adapting to other IoT sensor applications. In this article, we study and analyze how IoT sensor produces data for big data analytics, and it also highlights the existing challenges of intelligent solutions. IoT sensor applications required big data classification and analysis in a Fog computing (FC) environment using computation intelligence (CI). Our proposed Fog big data analysis model (FBDAM) and BPNN analysis model for IoT sensor application using fusion deep learning (FDL) pose new obstacles for potential machine-to-machine communication practices. We have applied our proposed FBDAM on the most significant Fog applications developed on smart city datasets (parking, transportation, security, and sensor IoT dataset) and got improving results. We compared different deep and machine learning algorithms (SVM, SVMG-RBF, BPNN, S3VM, and proposed FDL) on different smart city dataset IoT application environments. |
doi_str_mv | 10.1155/2021/6876688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2589579309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2589579309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dbc2b15628fa9f618eb8662e2796cc90a325f0e7ff5765e3d6e5c28d33f43c593</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs7f0DApY7NR_Mxy9paLRZc2IK7kGaSmjJOxmSK9N-boV27evc9Do_LAeAWo0eMGRsRRPCIS8G5lGdggBmnBcNjcZ4zIuMCE_p5Ca5S2qFMMiwH4G0etvDJb-FMdxpOGl0fkk_QhQgXYQU_bJNynLRt7Y3ufGjgOvlmC-f71C8za1u4tDo2-XgNLpyuk705zSFYz59X09di-f6ymE6WhaFUdEW1MWSTuxHpdOk4lnYjOSeWiJIbUyJNCXPICueY4MzSiltmiKwodWNqWEmH4O74t43hZ29Tp3ZhH3P1pAiTJRMlRT31cKRMDClF61Qb_beOB4WR6nWpXpc66cr4_RH_8k2lf_3_9B8MsGgl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589579309</pqid></control><display><type>article</type><title>Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Rajawat, Anand Singh ; Bedi, Pradeep ; Goyal, S. B. ; Alharbi, Adel R. ; Aljaedi, Amer ; Jamal, Sajjad Shaukat ; Shukla, Piyush Kumar</creator><contributor>Kumar, Vijay ; Vijay Kumar</contributor><creatorcontrib>Rajawat, Anand Singh ; Bedi, Pradeep ; Goyal, S. B. ; Alharbi, Adel R. ; Aljaedi, Amer ; Jamal, Sajjad Shaukat ; Shukla, Piyush Kumar ; Kumar, Vijay ; Vijay Kumar</creatorcontrib><description>The IoT sensor applications have grown in extreme numbers, generating a large amount of data, and it requires very effective data analysis procedures. However, the different IoT infrastructures and IoT sensor device layers possess protocol limitations in transmitting and receiving messages which generate obstacles in developing the smart IoT sensor applications. This difficulty prohibited existing IoT sensor implementations from adapting to other IoT sensor applications. In this article, we study and analyze how IoT sensor produces data for big data analytics, and it also highlights the existing challenges of intelligent solutions. IoT sensor applications required big data classification and analysis in a Fog computing (FC) environment using computation intelligence (CI). Our proposed Fog big data analysis model (FBDAM) and BPNN analysis model for IoT sensor application using fusion deep learning (FDL) pose new obstacles for potential machine-to-machine communication practices. We have applied our proposed FBDAM on the most significant Fog applications developed on smart city datasets (parking, transportation, security, and sensor IoT dataset) and got improving results. We compared different deep and machine learning algorithms (SVM, SVMG-RBF, BPNN, S3VM, and proposed FDL) on different smart city dataset IoT application environments.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/6876688</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Automation ; Barriers ; Big Data ; Cloud computing ; Data analysis ; Data processing ; Datasets ; Deep learning ; Extreme values ; Internet of Things ; Machine learning ; Optimization techniques ; Sensors ; Smart cities</subject><ispartof>Mathematical problems in engineering, 2021-10, Vol.2021, p.1-16</ispartof><rights>Copyright © 2021 Anand Singh Rajawat et al.</rights><rights>Copyright © 2021 Anand Singh Rajawat et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dbc2b15628fa9f618eb8662e2796cc90a325f0e7ff5765e3d6e5c28d33f43c593</citedby><cites>FETCH-LOGICAL-c337t-dbc2b15628fa9f618eb8662e2796cc90a325f0e7ff5765e3d6e5c28d33f43c593</cites><orcidid>0000-0002-8411-7630 ; 0000-0002-3715-3882 ; 0000-0002-5852-1955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kumar, Vijay</contributor><contributor>Vijay Kumar</contributor><creatorcontrib>Rajawat, Anand Singh</creatorcontrib><creatorcontrib>Bedi, Pradeep</creatorcontrib><creatorcontrib>Goyal, S. B.</creatorcontrib><creatorcontrib>Alharbi, Adel R.</creatorcontrib><creatorcontrib>Aljaedi, Amer</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><creatorcontrib>Shukla, Piyush Kumar</creatorcontrib><title>Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning</title><title>Mathematical problems in engineering</title><description>The IoT sensor applications have grown in extreme numbers, generating a large amount of data, and it requires very effective data analysis procedures. However, the different IoT infrastructures and IoT sensor device layers possess protocol limitations in transmitting and receiving messages which generate obstacles in developing the smart IoT sensor applications. This difficulty prohibited existing IoT sensor implementations from adapting to other IoT sensor applications. In this article, we study and analyze how IoT sensor produces data for big data analytics, and it also highlights the existing challenges of intelligent solutions. IoT sensor applications required big data classification and analysis in a Fog computing (FC) environment using computation intelligence (CI). Our proposed Fog big data analysis model (FBDAM) and BPNN analysis model for IoT sensor application using fusion deep learning (FDL) pose new obstacles for potential machine-to-machine communication practices. We have applied our proposed FBDAM on the most significant Fog applications developed on smart city datasets (parking, transportation, security, and sensor IoT dataset) and got improving results. We compared different deep and machine learning algorithms (SVM, SVMG-RBF, BPNN, S3VM, and proposed FDL) on different smart city dataset IoT application environments.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Barriers</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Extreme values</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Optimization techniques</subject><subject>Sensors</subject><subject>Smart cities</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEURYMoWKs7f0DApY7NR_Mxy9paLRZc2IK7kGaSmjJOxmSK9N-boV27evc9Do_LAeAWo0eMGRsRRPCIS8G5lGdggBmnBcNjcZ4zIuMCE_p5Ca5S2qFMMiwH4G0etvDJb-FMdxpOGl0fkk_QhQgXYQU_bJNynLRt7Y3ufGjgOvlmC-f71C8za1u4tDo2-XgNLpyuk705zSFYz59X09di-f6ymE6WhaFUdEW1MWSTuxHpdOk4lnYjOSeWiJIbUyJNCXPICueY4MzSiltmiKwodWNqWEmH4O74t43hZ29Tp3ZhH3P1pAiTJRMlRT31cKRMDClF61Qb_beOB4WR6nWpXpc66cr4_RH_8k2lf_3_9B8MsGgl</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Rajawat, Anand Singh</creator><creator>Bedi, Pradeep</creator><creator>Goyal, S. B.</creator><creator>Alharbi, Adel R.</creator><creator>Aljaedi, Amer</creator><creator>Jamal, Sajjad Shaukat</creator><creator>Shukla, Piyush Kumar</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8411-7630</orcidid><orcidid>https://orcid.org/0000-0002-3715-3882</orcidid><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid></search><sort><creationdate>20211020</creationdate><title>Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning</title><author>Rajawat, Anand Singh ; Bedi, Pradeep ; Goyal, S. B. ; Alharbi, Adel R. ; Aljaedi, Amer ; Jamal, Sajjad Shaukat ; Shukla, Piyush Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dbc2b15628fa9f618eb8662e2796cc90a325f0e7ff5765e3d6e5c28d33f43c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Barriers</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Extreme values</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Optimization techniques</topic><topic>Sensors</topic><topic>Smart cities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajawat, Anand Singh</creatorcontrib><creatorcontrib>Bedi, Pradeep</creatorcontrib><creatorcontrib>Goyal, S. B.</creatorcontrib><creatorcontrib>Alharbi, Adel R.</creatorcontrib><creatorcontrib>Aljaedi, Amer</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><creatorcontrib>Shukla, Piyush Kumar</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajawat, Anand Singh</au><au>Bedi, Pradeep</au><au>Goyal, S. B.</au><au>Alharbi, Adel R.</au><au>Aljaedi, Amer</au><au>Jamal, Sajjad Shaukat</au><au>Shukla, Piyush Kumar</au><au>Kumar, Vijay</au><au>Vijay Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-10-20</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The IoT sensor applications have grown in extreme numbers, generating a large amount of data, and it requires very effective data analysis procedures. However, the different IoT infrastructures and IoT sensor device layers possess protocol limitations in transmitting and receiving messages which generate obstacles in developing the smart IoT sensor applications. This difficulty prohibited existing IoT sensor implementations from adapting to other IoT sensor applications. In this article, we study and analyze how IoT sensor produces data for big data analytics, and it also highlights the existing challenges of intelligent solutions. IoT sensor applications required big data classification and analysis in a Fog computing (FC) environment using computation intelligence (CI). Our proposed Fog big data analysis model (FBDAM) and BPNN analysis model for IoT sensor application using fusion deep learning (FDL) pose new obstacles for potential machine-to-machine communication practices. We have applied our proposed FBDAM on the most significant Fog applications developed on smart city datasets (parking, transportation, security, and sensor IoT dataset) and got improving results. We compared different deep and machine learning algorithms (SVM, SVMG-RBF, BPNN, S3VM, and proposed FDL) on different smart city dataset IoT application environments.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/6876688</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8411-7630</orcidid><orcidid>https://orcid.org/0000-0002-3715-3882</orcidid><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021-10, Vol.2021, p.1-16 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2589579309 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Algorithms Automation Barriers Big Data Cloud computing Data analysis Data processing Datasets Deep learning Extreme values Internet of Things Machine learning Optimization techniques Sensors Smart cities |
title | Fog Big Data Analysis for IoT Sensor Application Using Fusion Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fog%20Big%20Data%20Analysis%20for%20IoT%20Sensor%20Application%20Using%20Fusion%20Deep%20Learning&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Rajawat,%20Anand%20Singh&rft.date=2021-10-20&rft.volume=2021&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/6876688&rft_dat=%3Cproquest_cross%3E2589579309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589579309&rft_id=info:pmid/&rfr_iscdi=true |