Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer

Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2021-12, Vol.91 (12), p.4693-4716
Hauptverfasser: Huang, Rukai, Ding, Shenghu, Zhang, Xin, Li, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4716
container_issue 12
container_start_page 4693
container_title Archive of applied mechanics (1991)
container_volume 91
creator Huang, Rukai
Ding, Shenghu
Zhang, Xin
Li, Xing
description Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development.
doi_str_mv 10.1007/s00419-021-02018-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2589193142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2589193142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-92029db099a33ac28e7bc4ef03472c11824b75302800b52301f0012bb22f909f3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-jMZLe7OUqxKhS86MFTyKbZumW7aZMUXH-9sSt48zDMDHzv8XiMXSPcIkB5FwBylBwI0wBWXJ6wCeaCOMwqPGUTkEJyLIQ4ZxchbCDxBcGEvS98a2Lret1lxvVRm5jtvKs7u81ck7ne8lW7tX0YkQ_7qdfHa9faL2c7a2IyyPYHHVrjhxB1F7JOD9ZfsrMmPfbqd0_Z2-Lhdf7Ely-Pz_P7JTdiJiKXBCRXNUiphdCGKlvWJrcNiLwkg1hRXpeFAKoA6oIEYAOAVNdEjQTZiCm7GX1T7P3Bhqg27uBTxKCoqCRKgTklikbKeBeCt43a-Xar_aAQ1E-FaqxQpQrVsUIlk0iMopDgfm39n_U_qm9Qt3Qp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589193142</pqid></control><display><type>article</type><title>Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer</title><source>SpringerNature Journals</source><creator>Huang, Rukai ; Ding, Shenghu ; Zhang, Xin ; Li, Xing</creator><creatorcontrib>Huang, Rukai ; Ding, Shenghu ; Zhang, Xin ; Li, Xing</creatorcontrib><description>Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-021-02018-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Classical Mechanics ; Conjugate gradient method ; Electric contacts ; Electric fields ; Engineering ; Fast Fourier transformations ; Fourier transforms ; Frequency response functions ; Integral transforms ; Original ; Phonons ; Piezoelectricity ; Pressure distribution ; Quasicrystals ; Theoretical and Applied Mechanics ; Thickness</subject><ispartof>Archive of applied mechanics (1991), 2021-12, Vol.91 (12), p.4693-4716</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-92029db099a33ac28e7bc4ef03472c11824b75302800b52301f0012bb22f909f3</citedby><cites>FETCH-LOGICAL-c363t-92029db099a33ac28e7bc4ef03472c11824b75302800b52301f0012bb22f909f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-021-02018-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-021-02018-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, Rukai</creatorcontrib><creatorcontrib>Ding, Shenghu</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><title>Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development.</description><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Conjugate gradient method</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Frequency response functions</subject><subject>Integral transforms</subject><subject>Original</subject><subject>Phonons</subject><subject>Piezoelectricity</subject><subject>Pressure distribution</subject><subject>Quasicrystals</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thickness</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-jMZLe7OUqxKhS86MFTyKbZumW7aZMUXH-9sSt48zDMDHzv8XiMXSPcIkB5FwBylBwI0wBWXJ6wCeaCOMwqPGUTkEJyLIQ4ZxchbCDxBcGEvS98a2Lret1lxvVRm5jtvKs7u81ck7ne8lW7tX0YkQ_7qdfHa9faL2c7a2IyyPYHHVrjhxB1F7JOD9ZfsrMmPfbqd0_Z2-Lhdf7Ely-Pz_P7JTdiJiKXBCRXNUiphdCGKlvWJrcNiLwkg1hRXpeFAKoA6oIEYAOAVNdEjQTZiCm7GX1T7P3Bhqg27uBTxKCoqCRKgTklikbKeBeCt43a-Xar_aAQ1E-FaqxQpQrVsUIlk0iMopDgfm39n_U_qm9Qt3Qp</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Huang, Rukai</creator><creator>Ding, Shenghu</creator><creator>Zhang, Xin</creator><creator>Li, Xing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer</title><author>Huang, Rukai ; Ding, Shenghu ; Zhang, Xin ; Li, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-92029db099a33ac28e7bc4ef03472c11824b75302800b52301f0012bb22f909f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Conjugate gradient method</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Frequency response functions</topic><topic>Integral transforms</topic><topic>Original</topic><topic>Phonons</topic><topic>Piezoelectricity</topic><topic>Pressure distribution</topic><topic>Quasicrystals</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Rukai</creatorcontrib><creatorcontrib>Ding, Shenghu</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Rukai</au><au>Ding, Shenghu</au><au>Zhang, Xin</au><au>Li, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>91</volume><issue>12</issue><spage>4693</spage><epage>4716</epage><pages>4693-4716</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-021-02018-9</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2021-12, Vol.91 (12), p.4693-4716
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_journals_2589193142
source SpringerNature Journals
subjects Boundary conditions
Classical Mechanics
Conjugate gradient method
Electric contacts
Electric fields
Engineering
Fast Fourier transformations
Fourier transforms
Frequency response functions
Integral transforms
Original
Phonons
Piezoelectricity
Pressure distribution
Quasicrystals
Theoretical and Applied Mechanics
Thickness
title Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frictional%20contact%20problem%20of%20one-dimensional%20hexagonal%20piezoelectric%20quasicrystals%20layer&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Huang,%20Rukai&rft.date=2021-12-01&rft.volume=91&rft.issue=12&rft.spage=4693&rft.epage=4716&rft.pages=4693-4716&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-021-02018-9&rft_dat=%3Cproquest_cross%3E2589193142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589193142&rft_id=info:pmid/&rfr_iscdi=true