Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer
Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2021-12, Vol.91 (12), p.4693-4716 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4716 |
---|---|
container_issue | 12 |
container_start_page | 4693 |
container_title | Archive of applied mechanics (1991) |
container_volume | 91 |
creator | Huang, Rukai Ding, Shenghu Zhang, Xin Li, Xing |
description | Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development. |
doi_str_mv | 10.1007/s00419-021-02018-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2589193142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2589193142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-92029db099a33ac28e7bc4ef03472c11824b75302800b52301f0012bb22f909f3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKt_wNOC5-jMZLe7OUqxKhS86MFTyKbZumW7aZMUXH-9sSt48zDMDHzv8XiMXSPcIkB5FwBylBwI0wBWXJ6wCeaCOMwqPGUTkEJyLIQ4ZxchbCDxBcGEvS98a2Lret1lxvVRm5jtvKs7u81ck7ne8lW7tX0YkQ_7qdfHa9faL2c7a2IyyPYHHVrjhxB1F7JOD9ZfsrMmPfbqd0_Z2-Lhdf7Ely-Pz_P7JTdiJiKXBCRXNUiphdCGKlvWJrcNiLwkg1hRXpeFAKoA6oIEYAOAVNdEjQTZiCm7GX1T7P3Bhqg27uBTxKCoqCRKgTklikbKeBeCt43a-Xar_aAQ1E-FaqxQpQrVsUIlk0iMopDgfm39n_U_qm9Qt3Qp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589193142</pqid></control><display><type>article</type><title>Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer</title><source>SpringerNature Journals</source><creator>Huang, Rukai ; Ding, Shenghu ; Zhang, Xin ; Li, Xing</creator><creatorcontrib>Huang, Rukai ; Ding, Shenghu ; Zhang, Xin ; Li, Xing</creatorcontrib><description>Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-021-02018-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Classical Mechanics ; Conjugate gradient method ; Electric contacts ; Electric fields ; Engineering ; Fast Fourier transformations ; Fourier transforms ; Frequency response functions ; Integral transforms ; Original ; Phonons ; Piezoelectricity ; Pressure distribution ; Quasicrystals ; Theoretical and Applied Mechanics ; Thickness</subject><ispartof>Archive of applied mechanics (1991), 2021-12, Vol.91 (12), p.4693-4716</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-92029db099a33ac28e7bc4ef03472c11824b75302800b52301f0012bb22f909f3</citedby><cites>FETCH-LOGICAL-c363t-92029db099a33ac28e7bc4ef03472c11824b75302800b52301f0012bb22f909f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-021-02018-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-021-02018-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Huang, Rukai</creatorcontrib><creatorcontrib>Ding, Shenghu</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><title>Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development.</description><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Conjugate gradient method</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Engineering</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Frequency response functions</subject><subject>Integral transforms</subject><subject>Original</subject><subject>Phonons</subject><subject>Piezoelectricity</subject><subject>Pressure distribution</subject><subject>Quasicrystals</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thickness</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKt_wNOC5-jMZLe7OUqxKhS86MFTyKbZumW7aZMUXH-9sSt48zDMDHzv8XiMXSPcIkB5FwBylBwI0wBWXJ6wCeaCOMwqPGUTkEJyLIQ4ZxchbCDxBcGEvS98a2Lret1lxvVRm5jtvKs7u81ck7ne8lW7tX0YkQ_7qdfHa9faL2c7a2IyyPYHHVrjhxB1F7JOD9ZfsrMmPfbqd0_Z2-Lhdf7Ely-Pz_P7JTdiJiKXBCRXNUiphdCGKlvWJrcNiLwkg1hRXpeFAKoA6oIEYAOAVNdEjQTZiCm7GX1T7P3Bhqg27uBTxKCoqCRKgTklikbKeBeCt43a-Xar_aAQ1E-FaqxQpQrVsUIlk0iMopDgfm39n_U_qm9Qt3Qp</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Huang, Rukai</creator><creator>Ding, Shenghu</creator><creator>Zhang, Xin</creator><creator>Li, Xing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer</title><author>Huang, Rukai ; Ding, Shenghu ; Zhang, Xin ; Li, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-92029db099a33ac28e7bc4ef03472c11824b75302800b52301f0012bb22f909f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Conjugate gradient method</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Engineering</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Frequency response functions</topic><topic>Integral transforms</topic><topic>Original</topic><topic>Phonons</topic><topic>Piezoelectricity</topic><topic>Pressure distribution</topic><topic>Quasicrystals</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Rukai</creatorcontrib><creatorcontrib>Ding, Shenghu</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Rukai</au><au>Ding, Shenghu</au><au>Zhang, Xin</au><au>Li, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>91</volume><issue>12</issue><spage>4693</spage><epage>4716</epage><pages>4693-4716</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>Based on three-dimensional (3D) general solutions for one-dimensional (1D) hexagonal piezoelectric quasicrystals (PEQCs), this paper studied the frictional contact problem of 1D hexagonal PEQCs layer. The frequency response functions for 1D hexagonal PEQCs layer are analytically derived by applying double Fourier integral transforms to the general solutions and boundary conditions, which are consequently converted to the corresponding influence coefficients. The conjugate gradient method is used to obtain the unknown pressure distribution, while the discrete convolution–fast Fourier transform technique is applied to calculate the displacements and stresses of phonon and phason, electric potentials and electric displacements. Numerical results are given to reveal the influences of layer thickness, material parameters and loading conditions on the contact behavior. The obtained 3D contact solutions are not only helpful for further analysis and understanding of the coupling characteristics of phonon, phason and electric field, but also provide a reference basis for experimental analysis and material development.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-021-02018-9</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2021-12, Vol.91 (12), p.4693-4716 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_journals_2589193142 |
source | SpringerNature Journals |
subjects | Boundary conditions Classical Mechanics Conjugate gradient method Electric contacts Electric fields Engineering Fast Fourier transformations Fourier transforms Frequency response functions Integral transforms Original Phonons Piezoelectricity Pressure distribution Quasicrystals Theoretical and Applied Mechanics Thickness |
title | Frictional contact problem of one-dimensional hexagonal piezoelectric quasicrystals layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frictional%20contact%20problem%20of%20one-dimensional%20hexagonal%20piezoelectric%20quasicrystals%20layer&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Huang,%20Rukai&rft.date=2021-12-01&rft.volume=91&rft.issue=12&rft.spage=4693&rft.epage=4716&rft.pages=4693-4716&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-021-02018-9&rft_dat=%3Cproquest_cross%3E2589193142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589193142&rft_id=info:pmid/&rfr_iscdi=true |