Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption
In this work, we successfully synthesize N -doped carbon nanoribbon (NCNR) from polypyrrole precursor and investigate their dielectric and microwaves absorption (MA) properties. NCNR appears as two-dimensional ribbon-like microstructure with tunable N -doping ratio. The dielectric property of NCNR c...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-11, Vol.32 (21), p.26151-26160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26160 |
---|---|
container_issue | 21 |
container_start_page | 26151 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Gu, Linlin Yang, Zhiqian Sun, Qingya Xie, Aming Wang, Zhen |
description | In this work, we successfully synthesize
N
-doped carbon nanoribbon (NCNR) from polypyrrole precursor and investigate their dielectric and microwaves absorption (MA) properties. NCNR appears as two-dimensional ribbon-like microstructure with tunable
N
-doping ratio. The dielectric property of NCNR can be tuned by
N
-doping content controlling. The results demonstrate that NCNR exhibits excellent MA performance at a filler-loading ratio of only 5 wt%. When the sample thickness is 3.3 mm, the maximal absorption reaches − 73.76 dB at 10.48 GHz. The maximum efficient bandwidth gets to 7.4 GHz (10.6–18 GHz), under a sample thickness of 2.7 mm. A model that refers to conductive loss, polarization relaxation, and impedance match is adopted to explain the MA mechanism of NCNR. This research opens up the exploration of NCNR in the field of MA, and provides a new idea for the design of carbon-related broad band MA materials. |
doi_str_mv | 10.1007/s10854-021-06548-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2588778367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588778367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8e3912f340b59d76dbdb4f6e85a112f5acf7440e37cbeaef665edd06a828a5843</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62jeySyl-ILiAxTchWSSyJR2Mt60lf57p47gztW5XM459_IhdE7JJSVEXxVKjBSYMIqJksJgcYAmVGqOhWHvh2hCaqmxkIwdo5NSFoQQJbiZoJfnvNz1O4C8jDhEaLcxVI845H7QxoHPXdW5LkPr92PKUHnILnjXhWrVNpC_3DaWyvmSoV-3uTtFR8ktSzz71Sl6u715nd3j-dPdw-x6jhtO6zU2kdeUJS6Il3XQKvjgRVLRSEeHvXRN0kKQyHXjo4tJKRlDIMoZZpw0gk_RxdjbQ_7cxLK2i7yBbjhpmTRGa8OVHlxsdA2flgIx2R7alYOdpcTu0dkRnR3Q2R90dl_Nx1AZzN1HhL_qf1LfKkpy-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588778367</pqid></control><display><type>article</type><title>Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gu, Linlin ; Yang, Zhiqian ; Sun, Qingya ; Xie, Aming ; Wang, Zhen</creator><creatorcontrib>Gu, Linlin ; Yang, Zhiqian ; Sun, Qingya ; Xie, Aming ; Wang, Zhen</creatorcontrib><description>In this work, we successfully synthesize
N
-doped carbon nanoribbon (NCNR) from polypyrrole precursor and investigate their dielectric and microwaves absorption (MA) properties. NCNR appears as two-dimensional ribbon-like microstructure with tunable
N
-doping ratio. The dielectric property of NCNR can be tuned by
N
-doping content controlling. The results demonstrate that NCNR exhibits excellent MA performance at a filler-loading ratio of only 5 wt%. When the sample thickness is 3.3 mm, the maximal absorption reaches − 73.76 dB at 10.48 GHz. The maximum efficient bandwidth gets to 7.4 GHz (10.6–18 GHz), under a sample thickness of 2.7 mm. A model that refers to conductive loss, polarization relaxation, and impedance match is adopted to explain the MA mechanism of NCNR. This research opens up the exploration of NCNR in the field of MA, and provides a new idea for the design of carbon-related broad band MA materials.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06548-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption ; Broadband ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dielectric properties ; Doping ; Materials Science ; Microwaves ; Nanoribbons ; Optical and Electronic Materials ; Polypyrroles ; Thickness</subject><ispartof>Journal of materials science. Materials in electronics, 2021-11, Vol.32 (21), p.26151-26160</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8e3912f340b59d76dbdb4f6e85a112f5acf7440e37cbeaef665edd06a828a5843</citedby><cites>FETCH-LOGICAL-c319t-8e3912f340b59d76dbdb4f6e85a112f5acf7440e37cbeaef665edd06a828a5843</cites><orcidid>0000-0002-5690-7707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-06548-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-06548-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Gu, Linlin</creatorcontrib><creatorcontrib>Yang, Zhiqian</creatorcontrib><creatorcontrib>Sun, Qingya</creatorcontrib><creatorcontrib>Xie, Aming</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><title>Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, we successfully synthesize
N
-doped carbon nanoribbon (NCNR) from polypyrrole precursor and investigate their dielectric and microwaves absorption (MA) properties. NCNR appears as two-dimensional ribbon-like microstructure with tunable
N
-doping ratio. The dielectric property of NCNR can be tuned by
N
-doping content controlling. The results demonstrate that NCNR exhibits excellent MA performance at a filler-loading ratio of only 5 wt%. When the sample thickness is 3.3 mm, the maximal absorption reaches − 73.76 dB at 10.48 GHz. The maximum efficient bandwidth gets to 7.4 GHz (10.6–18 GHz), under a sample thickness of 2.7 mm. A model that refers to conductive loss, polarization relaxation, and impedance match is adopted to explain the MA mechanism of NCNR. This research opens up the exploration of NCNR in the field of MA, and provides a new idea for the design of carbon-related broad band MA materials.</description><subject>Absorption</subject><subject>Broadband</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dielectric properties</subject><subject>Doping</subject><subject>Materials Science</subject><subject>Microwaves</subject><subject>Nanoribbons</subject><subject>Optical and Electronic Materials</subject><subject>Polypyrroles</subject><subject>Thickness</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62jeySyl-ILiAxTchWSSyJR2Mt60lf57p47gztW5XM459_IhdE7JJSVEXxVKjBSYMIqJksJgcYAmVGqOhWHvh2hCaqmxkIwdo5NSFoQQJbiZoJfnvNz1O4C8jDhEaLcxVI845H7QxoHPXdW5LkPr92PKUHnILnjXhWrVNpC_3DaWyvmSoV-3uTtFR8ktSzz71Sl6u715nd3j-dPdw-x6jhtO6zU2kdeUJS6Il3XQKvjgRVLRSEeHvXRN0kKQyHXjo4tJKRlDIMoZZpw0gk_RxdjbQ_7cxLK2i7yBbjhpmTRGa8OVHlxsdA2flgIx2R7alYOdpcTu0dkRnR3Q2R90dl_Nx1AZzN1HhL_qf1LfKkpy-w</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Gu, Linlin</creator><creator>Yang, Zhiqian</creator><creator>Sun, Qingya</creator><creator>Xie, Aming</creator><creator>Wang, Zhen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-5690-7707</orcidid></search><sort><creationdate>20211101</creationdate><title>Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption</title><author>Gu, Linlin ; Yang, Zhiqian ; Sun, Qingya ; Xie, Aming ; Wang, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8e3912f340b59d76dbdb4f6e85a112f5acf7440e37cbeaef665edd06a828a5843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Broadband</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dielectric properties</topic><topic>Doping</topic><topic>Materials Science</topic><topic>Microwaves</topic><topic>Nanoribbons</topic><topic>Optical and Electronic Materials</topic><topic>Polypyrroles</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Linlin</creatorcontrib><creatorcontrib>Yang, Zhiqian</creatorcontrib><creatorcontrib>Sun, Qingya</creatorcontrib><creatorcontrib>Xie, Aming</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Linlin</au><au>Yang, Zhiqian</au><au>Sun, Qingya</au><au>Xie, Aming</au><au>Wang, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>32</volume><issue>21</issue><spage>26151</spage><epage>26160</epage><pages>26151-26160</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, we successfully synthesize
N
-doped carbon nanoribbon (NCNR) from polypyrrole precursor and investigate their dielectric and microwaves absorption (MA) properties. NCNR appears as two-dimensional ribbon-like microstructure with tunable
N
-doping ratio. The dielectric property of NCNR can be tuned by
N
-doping content controlling. The results demonstrate that NCNR exhibits excellent MA performance at a filler-loading ratio of only 5 wt%. When the sample thickness is 3.3 mm, the maximal absorption reaches − 73.76 dB at 10.48 GHz. The maximum efficient bandwidth gets to 7.4 GHz (10.6–18 GHz), under a sample thickness of 2.7 mm. A model that refers to conductive loss, polarization relaxation, and impedance match is adopted to explain the MA mechanism of NCNR. This research opens up the exploration of NCNR in the field of MA, and provides a new idea for the design of carbon-related broad band MA materials.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06548-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5690-7707</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-11, Vol.32 (21), p.26151-26160 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2588778367 |
source | SpringerLink Journals - AutoHoldings |
subjects | Absorption Broadband Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Dielectric properties Doping Materials Science Microwaves Nanoribbons Optical and Electronic Materials Polypyrroles Thickness |
title | Polypyrrole-derived N-doped carbon nanoribbon for broadband microwaves absorption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polypyrrole-derived%20N-doped%20carbon%20nanoribbon%20for%20broadband%20microwaves%20absorption&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Gu,%20Linlin&rft.date=2021-11-01&rft.volume=32&rft.issue=21&rft.spage=26151&rft.epage=26160&rft.pages=26151-26160&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06548-4&rft_dat=%3Cproquest_cross%3E2588778367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588778367&rft_id=info:pmid/&rfr_iscdi=true |