Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation

The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2021-12, Vol.33 (4), p.2253-2269
Hauptverfasser: De Maesschalck, Peter, Doan, Thai Son, Wynen, Jeroen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2269
container_issue 4
container_start_page 2253
container_title Journal of dynamics and differential equations
container_volume 33
creator De Maesschalck, Peter
Doan, Thai Son
Wynen, Jeroen
description The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020), Wechselberger (Geometric singular perturbation theory beyond the standard form, Springer, New York, 2020) and Jelbart and Wechselberger (Nonlinearity 33(5):2364–2408, 2020) an intrinsic presentation of slow–fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow–fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve.
doi_str_mv 10.1007/s10884-020-09903-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2588420389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588420389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-450123a0cd175acce787ee13275363a84d3cdecf548ecc321443ae7f00cfb7623</originalsourceid><addsrcrecordid>eNp9kM1KQzEQRoMoWKsv4OqC6-jk5zbJUqu1hYILdR1immhKe29NUmx3voNv6JOY9gruXM0wfOcbOAidE7gkAOIqEZCSY6CAQSlgeHOAeqQWFCtK6WHZgQMWVPFjdJLSHACUZKqHppMmx9CkYKtbl11chsbk0DZV66v85qphDDlYswh5uzuZ6nHRfnx_fo1MytW4XfnqJvh1tHvoFB15s0ju7Hf20fPo7mk4xtOH-8nweootIypjXgOhzICdEVEba52QwjnCqKjZgBnJZ8zOnPU1l85aRgnnzDjhAax_EQPK-uii613F9n3tUtbzdh2b8lLTunigwKQqKdqlbGxTis7rVQxLE7eagN5Z0501XazpvTW9KRDroFTCzauLf9X_UD8lonEF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588420389</pqid></control><display><type>article</type><title>Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation</title><source>SpringerLink Journals - AutoHoldings</source><creator>De Maesschalck, Peter ; Doan, Thai Son ; Wynen, Jeroen</creator><creatorcontrib>De Maesschalck, Peter ; Doan, Thai Son ; Wynen, Jeroen</creatorcontrib><description>The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020), Wechselberger (Geometric singular perturbation theory beyond the standard form, Springer, New York, 2020) and Jelbart and Wechselberger (Nonlinearity 33(5):2364–2408, 2020) an intrinsic presentation of slow–fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow–fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-020-09903-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Canonical forms ; Fields (mathematics) ; Hopf bifurcation ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Parameterization ; Partial Differential Equations ; Perturbation theory ; Singular perturbation</subject><ispartof>Journal of dynamics and differential equations, 2021-12, Vol.33 (4), p.2253-2269</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-450123a0cd175acce787ee13275363a84d3cdecf548ecc321443ae7f00cfb7623</citedby><cites>FETCH-LOGICAL-c319t-450123a0cd175acce787ee13275363a84d3cdecf548ecc321443ae7f00cfb7623</cites><orcidid>0000-0001-5308-0217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-020-09903-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-020-09903-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>De Maesschalck, Peter</creatorcontrib><creatorcontrib>Doan, Thai Son</creatorcontrib><creatorcontrib>Wynen, Jeroen</creatorcontrib><title>Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020), Wechselberger (Geometric singular perturbation theory beyond the standard form, Springer, New York, 2020) and Jelbart and Wechselberger (Nonlinearity 33(5):2364–2408, 2020) an intrinsic presentation of slow–fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow–fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve.</description><subject>Applications of Mathematics</subject><subject>Canonical forms</subject><subject>Fields (mathematics)</subject><subject>Hopf bifurcation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Parameterization</subject><subject>Partial Differential Equations</subject><subject>Perturbation theory</subject><subject>Singular perturbation</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KQzEQRoMoWKsv4OqC6-jk5zbJUqu1hYILdR1immhKe29NUmx3voNv6JOY9gruXM0wfOcbOAidE7gkAOIqEZCSY6CAQSlgeHOAeqQWFCtK6WHZgQMWVPFjdJLSHACUZKqHppMmx9CkYKtbl11chsbk0DZV66v85qphDDlYswh5uzuZ6nHRfnx_fo1MytW4XfnqJvh1tHvoFB15s0ju7Hf20fPo7mk4xtOH-8nweootIypjXgOhzICdEVEba52QwjnCqKjZgBnJZ8zOnPU1l85aRgnnzDjhAax_EQPK-uii613F9n3tUtbzdh2b8lLTunigwKQqKdqlbGxTis7rVQxLE7eagN5Z0501XazpvTW9KRDroFTCzauLf9X_UD8lonEF</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>De Maesschalck, Peter</creator><creator>Doan, Thai Son</creator><creator>Wynen, Jeroen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5308-0217</orcidid></search><sort><creationdate>20211201</creationdate><title>Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation</title><author>De Maesschalck, Peter ; Doan, Thai Son ; Wynen, Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-450123a0cd175acce787ee13275363a84d3cdecf548ecc321443ae7f00cfb7623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Canonical forms</topic><topic>Fields (mathematics)</topic><topic>Hopf bifurcation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Parameterization</topic><topic>Partial Differential Equations</topic><topic>Perturbation theory</topic><topic>Singular perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Maesschalck, Peter</creatorcontrib><creatorcontrib>Doan, Thai Son</creatorcontrib><creatorcontrib>Wynen, Jeroen</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Maesschalck, Peter</au><au>Doan, Thai Son</au><au>Wynen, Jeroen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>4</issue><spage>2253</spage><epage>2269</epage><pages>2253-2269</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020), Wechselberger (Geometric singular perturbation theory beyond the standard form, Springer, New York, 2020) and Jelbart and Wechselberger (Nonlinearity 33(5):2364–2408, 2020) an intrinsic presentation of slow–fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow–fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-020-09903-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5308-0217</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-7294
ispartof Journal of dynamics and differential equations, 2021-12, Vol.33 (4), p.2253-2269
issn 1040-7294
1572-9222
language eng
recordid cdi_proquest_journals_2588420389
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Canonical forms
Fields (mathematics)
Hopf bifurcation
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Parameterization
Partial Differential Equations
Perturbation theory
Singular perturbation
title Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Determination%20of%20the%20Criticality%20of%20a%20Slow%E2%80%93Fast%20Hopf%20Bifurcation&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=De%20Maesschalck,%20Peter&rft.date=2021-12-01&rft.volume=33&rft.issue=4&rft.spage=2253&rft.epage=2269&rft.pages=2253-2269&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-020-09903-x&rft_dat=%3Cproquest_cross%3E2588420389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588420389&rft_id=info:pmid/&rfr_iscdi=true