Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation
The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020),...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2021-12, Vol.33 (4), p.2253-2269 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2269 |
---|---|
container_issue | 4 |
container_start_page | 2253 |
container_title | Journal of dynamics and differential equations |
container_volume | 33 |
creator | De Maesschalck, Peter Doan, Thai Son Wynen, Jeroen |
description | The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020), Wechselberger (Geometric singular perturbation theory beyond the standard form, Springer, New York, 2020) and Jelbart and Wechselberger (Nonlinearity 33(5):2364–2408, 2020) an intrinsic presentation of slow–fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow–fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve. |
doi_str_mv | 10.1007/s10884-020-09903-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2588420389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588420389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-450123a0cd175acce787ee13275363a84d3cdecf548ecc321443ae7f00cfb7623</originalsourceid><addsrcrecordid>eNp9kM1KQzEQRoMoWKsv4OqC6-jk5zbJUqu1hYILdR1immhKe29NUmx3voNv6JOY9gruXM0wfOcbOAidE7gkAOIqEZCSY6CAQSlgeHOAeqQWFCtK6WHZgQMWVPFjdJLSHACUZKqHppMmx9CkYKtbl11chsbk0DZV66v85qphDDlYswh5uzuZ6nHRfnx_fo1MytW4XfnqJvh1tHvoFB15s0ju7Hf20fPo7mk4xtOH-8nweootIypjXgOhzICdEVEba52QwjnCqKjZgBnJZ8zOnPU1l85aRgnnzDjhAax_EQPK-uii613F9n3tUtbzdh2b8lLTunigwKQqKdqlbGxTis7rVQxLE7eagN5Z0501XazpvTW9KRDroFTCzauLf9X_UD8lonEF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588420389</pqid></control><display><type>article</type><title>Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation</title><source>SpringerLink Journals - AutoHoldings</source><creator>De Maesschalck, Peter ; Doan, Thai Son ; Wynen, Jeroen</creator><creatorcontrib>De Maesschalck, Peter ; Doan, Thai Son ; Wynen, Jeroen</creatorcontrib><description>The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020), Wechselberger (Geometric singular perturbation theory beyond the standard form, Springer, New York, 2020) and Jelbart and Wechselberger (Nonlinearity 33(5):2364–2408, 2020) an intrinsic presentation of slow–fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow–fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-020-09903-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Canonical forms ; Fields (mathematics) ; Hopf bifurcation ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Parameterization ; Partial Differential Equations ; Perturbation theory ; Singular perturbation</subject><ispartof>Journal of dynamics and differential equations, 2021-12, Vol.33 (4), p.2253-2269</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-450123a0cd175acce787ee13275363a84d3cdecf548ecc321443ae7f00cfb7623</citedby><cites>FETCH-LOGICAL-c319t-450123a0cd175acce787ee13275363a84d3cdecf548ecc321443ae7f00cfb7623</cites><orcidid>0000-0001-5308-0217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-020-09903-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-020-09903-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>De Maesschalck, Peter</creatorcontrib><creatorcontrib>Doan, Thai Son</creatorcontrib><creatorcontrib>Wynen, Jeroen</creatorcontrib><title>Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020), Wechselberger (Geometric singular perturbation theory beyond the standard form, Springer, New York, 2020) and Jelbart and Wechselberger (Nonlinearity 33(5):2364–2408, 2020) an intrinsic presentation of slow–fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow–fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve.</description><subject>Applications of Mathematics</subject><subject>Canonical forms</subject><subject>Fields (mathematics)</subject><subject>Hopf bifurcation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Parameterization</subject><subject>Partial Differential Equations</subject><subject>Perturbation theory</subject><subject>Singular perturbation</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KQzEQRoMoWKsv4OqC6-jk5zbJUqu1hYILdR1immhKe29NUmx3voNv6JOY9gruXM0wfOcbOAidE7gkAOIqEZCSY6CAQSlgeHOAeqQWFCtK6WHZgQMWVPFjdJLSHACUZKqHppMmx9CkYKtbl11chsbk0DZV66v85qphDDlYswh5uzuZ6nHRfnx_fo1MytW4XfnqJvh1tHvoFB15s0ju7Hf20fPo7mk4xtOH-8nweootIypjXgOhzICdEVEba52QwjnCqKjZgBnJZ8zOnPU1l85aRgnnzDjhAax_EQPK-uii613F9n3tUtbzdh2b8lLTunigwKQqKdqlbGxTis7rVQxLE7eagN5Z0501XazpvTW9KRDroFTCzauLf9X_UD8lonEF</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>De Maesschalck, Peter</creator><creator>Doan, Thai Son</creator><creator>Wynen, Jeroen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5308-0217</orcidid></search><sort><creationdate>20211201</creationdate><title>Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation</title><author>De Maesschalck, Peter ; Doan, Thai Son ; Wynen, Jeroen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-450123a0cd175acce787ee13275363a84d3cdecf548ecc321443ae7f00cfb7623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Canonical forms</topic><topic>Fields (mathematics)</topic><topic>Hopf bifurcation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Parameterization</topic><topic>Partial Differential Equations</topic><topic>Perturbation theory</topic><topic>Singular perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Maesschalck, Peter</creatorcontrib><creatorcontrib>Doan, Thai Son</creatorcontrib><creatorcontrib>Wynen, Jeroen</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Maesschalck, Peter</au><au>Doan, Thai Son</au><au>Wynen, Jeroen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>4</issue><spage>2253</spage><epage>2269</epage><pages>2253-2269</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>The presence of slow–fast Hopf (or singular Hopf) points in slow–fast systems in the plane is often deduced from the shape of a vector field brought into normal form. It can however be quite cumbersome to put a system in normal form. In De Maesschalck et al. (Canards from birth to transition, 2020), Wechselberger (Geometric singular perturbation theory beyond the standard form, Springer, New York, 2020) and Jelbart and Wechselberger (Nonlinearity 33(5):2364–2408, 2020) an intrinsic presentation of slow–fast vector fields is initiated, showing hands-on formulas to check for the presence of such singular contact points. We generalize the results in the sense that the criticality of the Hopf bifurcation can be checked with a single formula. We demonstrate the result on a slow–fast system given in non-standard form where slow and fast variables are not separated from each other. The formula is convenient since it does not require any parameterization of the critical curve.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-020-09903-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5308-0217</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7294 |
ispartof | Journal of dynamics and differential equations, 2021-12, Vol.33 (4), p.2253-2269 |
issn | 1040-7294 1572-9222 |
language | eng |
recordid | cdi_proquest_journals_2588420389 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Canonical forms Fields (mathematics) Hopf bifurcation Mathematics Mathematics and Statistics Ordinary Differential Equations Parameterization Partial Differential Equations Perturbation theory Singular perturbation |
title | Intrinsic Determination of the Criticality of a Slow–Fast Hopf Bifurcation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Determination%20of%20the%20Criticality%20of%20a%20Slow%E2%80%93Fast%20Hopf%20Bifurcation&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=De%20Maesschalck,%20Peter&rft.date=2021-12-01&rft.volume=33&rft.issue=4&rft.spage=2253&rft.epage=2269&rft.pages=2253-2269&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-020-09903-x&rft_dat=%3Cproquest_cross%3E2588420389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588420389&rft_id=info:pmid/&rfr_iscdi=true |