Comparative study by DFT method of structural, electronic and optical properties of monolayer, bilayer and bulk CdS

In this work, we studied structural, electronic and optical properties of binary compound CdS in bulk, bilayer and monolayer forms using density functional theory method with full potential integrated in Wien2k code. In our calculations, we have used the PBEsol approximation for the structural prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2021-11, Vol.127 (11), Article 878
Hauptverfasser: Atmani, El Houssine, Bziz, Ibrahim, Fazouan, Nejma, Aazi, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 127
creator Atmani, El Houssine
Bziz, Ibrahim
Fazouan, Nejma
Aazi, Mohamed
description In this work, we studied structural, electronic and optical properties of binary compound CdS in bulk, bilayer and monolayer forms using density functional theory method with full potential integrated in Wien2k code. In our calculations, we have used the PBEsol approximation for the structural properties and the TB-mBJ approximation for the electronic and the optical properties. The equilibrium lattice constants and the band gap energy obtained with monolayer and bilayer are higher than those of bulk wurtzite, while the bond length between Cd and S atoms is reduced. The bond length contraction is due to the effect of sp2 hybridization in 2D graphene-like structure, which is stronger than the effect of sp3 hybridization in bulk wurtzite. The increase in band gap energy can be explained by quantum confinement effects associated with the size reduction of CdS structure. For optical properties, we found that CdS monolayer and bilayer have low absorption and high transparency than the bulk in visible range, which is also explained by quantum confinement effects. According to these obtained properties, CdS graphene-like can be one of the promising nanomaterials for optoelectronic applications.
doi_str_mv 10.1007/s00339-021-05009-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2588420350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588420350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f88e7ea214c84d578e9ae9eef5e91d30dc93c675cf9e115c011bb5759aa6c07e3</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwicV3BaZq2OaLBAGkSB8Y5SlMXOrqmJClS356wIXHDF1v2_9nWT8glg2sGUNx4AM5lAilLQADIhB-RGct4mkDO4ZjMQGZFUnKZn5Iz77cQI0vTGfFLuxu006H9QurDWE-0mujdakN3GN5tTW0T2240YXS6W1Ds0ARn-9ZQ3cfpEFqjOzo4O6ALLfofYGd72-kJ3YJW7b7Yi6ux-6DL-uWcnDS683jxm-fkdXW_WT4m6-eHp-XtOjGcyZA0ZYkF6pRlpsxqUZQoNUrERqBkNYfaSG7yQphGImPCAGNVJQohtc4NFMjn5OqwN373OaIPamtH18eTKhVlmaXABURVelAZZ7132KjBtTvtJsVA_ZirDuaqaK7am6t4hPgB8lHcv6H7W_0P9Q1fZX4F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588420350</pqid></control><display><type>article</type><title>Comparative study by DFT method of structural, electronic and optical properties of monolayer, bilayer and bulk CdS</title><source>SpringerLink Journals - AutoHoldings</source><creator>Atmani, El Houssine ; Bziz, Ibrahim ; Fazouan, Nejma ; Aazi, Mohamed</creator><creatorcontrib>Atmani, El Houssine ; Bziz, Ibrahim ; Fazouan, Nejma ; Aazi, Mohamed</creatorcontrib><description>In this work, we studied structural, electronic and optical properties of binary compound CdS in bulk, bilayer and monolayer forms using density functional theory method with full potential integrated in Wien2k code. In our calculations, we have used the PBEsol approximation for the structural properties and the TB-mBJ approximation for the electronic and the optical properties. The equilibrium lattice constants and the band gap energy obtained with monolayer and bilayer are higher than those of bulk wurtzite, while the bond length between Cd and S atoms is reduced. The bond length contraction is due to the effect of sp2 hybridization in 2D graphene-like structure, which is stronger than the effect of sp3 hybridization in bulk wurtzite. The increase in band gap energy can be explained by quantum confinement effects associated with the size reduction of CdS structure. For optical properties, we found that CdS monolayer and bilayer have low absorption and high transparency than the bulk in visible range, which is also explained by quantum confinement effects. According to these obtained properties, CdS graphene-like can be one of the promising nanomaterials for optoelectronic applications.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-05009-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Approximation ; Bilayers ; Bulk density ; Characterization and Evaluation of Materials ; Chemical bonds ; Comparative studies ; Condensed Matter Physics ; Density functional theory ; Energy gap ; Graphene ; Lattice parameters ; Machines ; Manufacturing ; Materials science ; Mathematical analysis ; Monolayers ; Nanomaterials ; Nanotechnology ; Optical and Electronic Materials ; Optical properties ; Optoelectronics ; Physics ; Physics and Astronomy ; Processes ; Quantum confinement ; Size reduction ; Surfaces and Interfaces ; Thin Films ; Wurtzite</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2021-11, Vol.127 (11), Article 878</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f88e7ea214c84d578e9ae9eef5e91d30dc93c675cf9e115c011bb5759aa6c07e3</citedby><cites>FETCH-LOGICAL-c319t-f88e7ea214c84d578e9ae9eef5e91d30dc93c675cf9e115c011bb5759aa6c07e3</cites><orcidid>0000-0001-5325-5371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-05009-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-05009-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Atmani, El Houssine</creatorcontrib><creatorcontrib>Bziz, Ibrahim</creatorcontrib><creatorcontrib>Fazouan, Nejma</creatorcontrib><creatorcontrib>Aazi, Mohamed</creatorcontrib><title>Comparative study by DFT method of structural, electronic and optical properties of monolayer, bilayer and bulk CdS</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this work, we studied structural, electronic and optical properties of binary compound CdS in bulk, bilayer and monolayer forms using density functional theory method with full potential integrated in Wien2k code. In our calculations, we have used the PBEsol approximation for the structural properties and the TB-mBJ approximation for the electronic and the optical properties. The equilibrium lattice constants and the band gap energy obtained with monolayer and bilayer are higher than those of bulk wurtzite, while the bond length between Cd and S atoms is reduced. The bond length contraction is due to the effect of sp2 hybridization in 2D graphene-like structure, which is stronger than the effect of sp3 hybridization in bulk wurtzite. The increase in band gap energy can be explained by quantum confinement effects associated with the size reduction of CdS structure. For optical properties, we found that CdS monolayer and bilayer have low absorption and high transparency than the bulk in visible range, which is also explained by quantum confinement effects. According to these obtained properties, CdS graphene-like can be one of the promising nanomaterials for optoelectronic applications.</description><subject>Applied physics</subject><subject>Approximation</subject><subject>Bilayers</subject><subject>Bulk density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical bonds</subject><subject>Comparative studies</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Graphene</subject><subject>Lattice parameters</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Monolayers</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Quantum confinement</subject><subject>Size reduction</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Wurtzite</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAMhiMEEmPwApwicV3BaZq2OaLBAGkSB8Y5SlMXOrqmJClS356wIXHDF1v2_9nWT8glg2sGUNx4AM5lAilLQADIhB-RGct4mkDO4ZjMQGZFUnKZn5Iz77cQI0vTGfFLuxu006H9QurDWE-0mujdakN3GN5tTW0T2240YXS6W1Ds0ARn-9ZQ3cfpEFqjOzo4O6ALLfofYGd72-kJ3YJW7b7Yi6ux-6DL-uWcnDS683jxm-fkdXW_WT4m6-eHp-XtOjGcyZA0ZYkF6pRlpsxqUZQoNUrERqBkNYfaSG7yQphGImPCAGNVJQohtc4NFMjn5OqwN373OaIPamtH18eTKhVlmaXABURVelAZZ7132KjBtTvtJsVA_ZirDuaqaK7am6t4hPgB8lHcv6H7W_0P9Q1fZX4F</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Atmani, El Houssine</creator><creator>Bziz, Ibrahim</creator><creator>Fazouan, Nejma</creator><creator>Aazi, Mohamed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5325-5371</orcidid></search><sort><creationdate>20211101</creationdate><title>Comparative study by DFT method of structural, electronic and optical properties of monolayer, bilayer and bulk CdS</title><author>Atmani, El Houssine ; Bziz, Ibrahim ; Fazouan, Nejma ; Aazi, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f88e7ea214c84d578e9ae9eef5e91d30dc93c675cf9e115c011bb5759aa6c07e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Approximation</topic><topic>Bilayers</topic><topic>Bulk density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical bonds</topic><topic>Comparative studies</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Graphene</topic><topic>Lattice parameters</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Monolayers</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Quantum confinement</topic><topic>Size reduction</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Wurtzite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atmani, El Houssine</creatorcontrib><creatorcontrib>Bziz, Ibrahim</creatorcontrib><creatorcontrib>Fazouan, Nejma</creatorcontrib><creatorcontrib>Aazi, Mohamed</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atmani, El Houssine</au><au>Bziz, Ibrahim</au><au>Fazouan, Nejma</au><au>Aazi, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative study by DFT method of structural, electronic and optical properties of monolayer, bilayer and bulk CdS</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>127</volume><issue>11</issue><artnum>878</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this work, we studied structural, electronic and optical properties of binary compound CdS in bulk, bilayer and monolayer forms using density functional theory method with full potential integrated in Wien2k code. In our calculations, we have used the PBEsol approximation for the structural properties and the TB-mBJ approximation for the electronic and the optical properties. The equilibrium lattice constants and the band gap energy obtained with monolayer and bilayer are higher than those of bulk wurtzite, while the bond length between Cd and S atoms is reduced. The bond length contraction is due to the effect of sp2 hybridization in 2D graphene-like structure, which is stronger than the effect of sp3 hybridization in bulk wurtzite. The increase in band gap energy can be explained by quantum confinement effects associated with the size reduction of CdS structure. For optical properties, we found that CdS monolayer and bilayer have low absorption and high transparency than the bulk in visible range, which is also explained by quantum confinement effects. According to these obtained properties, CdS graphene-like can be one of the promising nanomaterials for optoelectronic applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-05009-3</doi><orcidid>https://orcid.org/0000-0001-5325-5371</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2021-11, Vol.127 (11), Article 878
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2588420350
source SpringerLink Journals - AutoHoldings
subjects Applied physics
Approximation
Bilayers
Bulk density
Characterization and Evaluation of Materials
Chemical bonds
Comparative studies
Condensed Matter Physics
Density functional theory
Energy gap
Graphene
Lattice parameters
Machines
Manufacturing
Materials science
Mathematical analysis
Monolayers
Nanomaterials
Nanotechnology
Optical and Electronic Materials
Optical properties
Optoelectronics
Physics
Physics and Astronomy
Processes
Quantum confinement
Size reduction
Surfaces and Interfaces
Thin Films
Wurtzite
title Comparative study by DFT method of structural, electronic and optical properties of monolayer, bilayer and bulk CdS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20study%20by%20DFT%20method%20of%20structural,%20electronic%20and%20optical%20properties%20of%20monolayer,%20bilayer%20and%20bulk%20CdS&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Atmani,%20El%20Houssine&rft.date=2021-11-01&rft.volume=127&rft.issue=11&rft.artnum=878&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-05009-3&rft_dat=%3Cproquest_cross%3E2588420350%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588420350&rft_id=info:pmid/&rfr_iscdi=true