Recent developments in computational color image denoising with PDEs to deep learning: a review
Image denoising methods are of fundamental importance in image processing and artificial intelligence systems. In this review, we analyze the traditional and state of the art mathematical models for computational color image denoising. These algorithms are divided into methods that are based on the...
Gespeichert in:
Veröffentlicht in: | The Artificial intelligence review 2021-12, Vol.54 (8), p.6245-6276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6276 |
---|---|
container_issue | 8 |
container_start_page | 6245 |
container_title | The Artificial intelligence review |
container_volume | 54 |
creator | Salamat, Nadeem Missen, Malik Muhammad Saad Surya Prasath, V. B. |
description | Image denoising methods are of fundamental importance in image processing and artificial intelligence systems. In this review, we analyze the traditional and state of the art mathematical models for computational color image denoising. These algorithms are divided into methods that are based on the partial differential equations, low rank, sparse representation and recent developments based on deep learning models. These algorithms also compared in terms of image quality measures. Our analysis and review of the computational color image denoising filters indicate that the convolutional neural networks from the deep learning domain obtain high quality restorations in terms of image quality despite the higher computational complexity. |
doi_str_mv | 10.1007/s10462-021-09977-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2588185197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718212746</galeid><sourcerecordid>A718212746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c91dd2b7fff647f4b335b548661169f5ea8bfbb8e1501aece64f3122dff7e80f3</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYMoeH38AVcB19UkbZrUnfgGQRFdh7SdXCO9SU16Ff31jlZwJ1lMcuaccPgIOeDsiDOmjjNnVS0KJnjBmkap4nODLLhUZaFQ3yQLJuqmEFrwbbKT8wtjTIqqXBDzAB2EifbwBkMcV3jP1AfaxdW4nuzkY7ADvoaYqF_ZJaAzRJ99WNJ3Pz3T-_OLTKeIMox0AJsCrk6opQnePLzvkS1nhwz7v3OXPF1ePJ5dF7d3Vzdnp7dFV0o9FV3D-160yjlXV8pVbVnKVla6rjmvGyfB6ta1rQYuGbdYua5cyYXonVOgmSt3yeH875ji6xryZF7iOmH3bITUmmvJG4Wuo9m1tAMYH1ycku3w9LDyXQzgPOqniiMogeQwIOZAl2LOCZwZE2JIH4Yz803ezOQNkjc_5M0nhso5lNEclpD-uvyT-gIzaYfl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588185197</pqid></control><display><type>article</type><title>Recent developments in computational color image denoising with PDEs to deep learning: a review</title><source>SpringerLink</source><creator>Salamat, Nadeem ; Missen, Malik Muhammad Saad ; Surya Prasath, V. B.</creator><creatorcontrib>Salamat, Nadeem ; Missen, Malik Muhammad Saad ; Surya Prasath, V. B.</creatorcontrib><description>Image denoising methods are of fundamental importance in image processing and artificial intelligence systems. In this review, we analyze the traditional and state of the art mathematical models for computational color image denoising. These algorithms are divided into methods that are based on the partial differential equations, low rank, sparse representation and recent developments based on deep learning models. These algorithms also compared in terms of image quality measures. Our analysis and review of the computational color image denoising filters indicate that the convolutional neural networks from the deep learning domain obtain high quality restorations in terms of image quality despite the higher computational complexity.</description><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-021-09977-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Artificial neural networks ; Color imagery ; Computer Science ; Deep learning ; Differential equations ; Image filters ; Image processing ; Image quality ; Machine learning ; Mathematical models ; Neural networks ; Noise reduction ; Partial differential equations ; Rankings</subject><ispartof>The Artificial intelligence review, 2021-12, Vol.54 (8), p.6245-6276</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c91dd2b7fff647f4b335b548661169f5ea8bfbb8e1501aece64f3122dff7e80f3</citedby><cites>FETCH-LOGICAL-c358t-c91dd2b7fff647f4b335b548661169f5ea8bfbb8e1501aece64f3122dff7e80f3</cites><orcidid>0000-0001-7163-7453</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-021-09977-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-021-09977-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Salamat, Nadeem</creatorcontrib><creatorcontrib>Missen, Malik Muhammad Saad</creatorcontrib><creatorcontrib>Surya Prasath, V. B.</creatorcontrib><title>Recent developments in computational color image denoising with PDEs to deep learning: a review</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Image denoising methods are of fundamental importance in image processing and artificial intelligence systems. In this review, we analyze the traditional and state of the art mathematical models for computational color image denoising. These algorithms are divided into methods that are based on the partial differential equations, low rank, sparse representation and recent developments based on deep learning models. These algorithms also compared in terms of image quality measures. Our analysis and review of the computational color image denoising filters indicate that the convolutional neural networks from the deep learning domain obtain high quality restorations in terms of image quality despite the higher computational complexity.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Color imagery</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Differential equations</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Partial differential equations</subject><subject>Rankings</subject><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxTAQhYMoeH38AVcB19UkbZrUnfgGQRFdh7SdXCO9SU16Ff31jlZwJ1lMcuaccPgIOeDsiDOmjjNnVS0KJnjBmkap4nODLLhUZaFQ3yQLJuqmEFrwbbKT8wtjTIqqXBDzAB2EifbwBkMcV3jP1AfaxdW4nuzkY7ADvoaYqF_ZJaAzRJ99WNJ3Pz3T-_OLTKeIMox0AJsCrk6opQnePLzvkS1nhwz7v3OXPF1ePJ5dF7d3Vzdnp7dFV0o9FV3D-160yjlXV8pVbVnKVla6rjmvGyfB6ta1rQYuGbdYua5cyYXonVOgmSt3yeH875ji6xryZF7iOmH3bITUmmvJG4Wuo9m1tAMYH1ycku3w9LDyXQzgPOqniiMogeQwIOZAl2LOCZwZE2JIH4Yz803ezOQNkjc_5M0nhso5lNEclpD-uvyT-gIzaYfl</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Salamat, Nadeem</creator><creator>Missen, Malik Muhammad Saad</creator><creator>Surya Prasath, V. B.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7163-7453</orcidid></search><sort><creationdate>20211201</creationdate><title>Recent developments in computational color image denoising with PDEs to deep learning: a review</title><author>Salamat, Nadeem ; Missen, Malik Muhammad Saad ; Surya Prasath, V. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c91dd2b7fff647f4b335b548661169f5ea8bfbb8e1501aece64f3122dff7e80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Color imagery</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Differential equations</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Partial differential equations</topic><topic>Rankings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salamat, Nadeem</creatorcontrib><creatorcontrib>Missen, Malik Muhammad Saad</creatorcontrib><creatorcontrib>Surya Prasath, V. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salamat, Nadeem</au><au>Missen, Malik Muhammad Saad</au><au>Surya Prasath, V. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent developments in computational color image denoising with PDEs to deep learning: a review</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>54</volume><issue>8</issue><spage>6245</spage><epage>6276</epage><pages>6245-6276</pages><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Image denoising methods are of fundamental importance in image processing and artificial intelligence systems. In this review, we analyze the traditional and state of the art mathematical models for computational color image denoising. These algorithms are divided into methods that are based on the partial differential equations, low rank, sparse representation and recent developments based on deep learning models. These algorithms also compared in terms of image quality measures. Our analysis and review of the computational color image denoising filters indicate that the convolutional neural networks from the deep learning domain obtain high quality restorations in terms of image quality despite the higher computational complexity.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-021-09977-z</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-7163-7453</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-2821 |
ispartof | The Artificial intelligence review, 2021-12, Vol.54 (8), p.6245-6276 |
issn | 0269-2821 1573-7462 |
language | eng |
recordid | cdi_proquest_journals_2588185197 |
source | SpringerLink |
subjects | Algorithms Analysis Artificial Intelligence Artificial neural networks Color imagery Computer Science Deep learning Differential equations Image filters Image processing Image quality Machine learning Mathematical models Neural networks Noise reduction Partial differential equations Rankings |
title | Recent developments in computational color image denoising with PDEs to deep learning: a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20developments%20in%20computational%20color%20image%20denoising%20with%20PDEs%20to%20deep%20learning:%20a%20review&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Salamat,%20Nadeem&rft.date=2021-12-01&rft.volume=54&rft.issue=8&rft.spage=6245&rft.epage=6276&rft.pages=6245-6276&rft.issn=0269-2821&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-021-09977-z&rft_dat=%3Cgale_proqu%3EA718212746%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588185197&rft_id=info:pmid/&rft_galeid=A718212746&rfr_iscdi=true |