On the Maximum Entropy Negation of a Complex-Valued Distribution
In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2021-11, Vol.29 (11), p.3259-3269 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3269 |
---|---|
container_issue | 11 |
container_start_page | 3259 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 29 |
creator | Xiao, Fuyuan |
description | In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be used only for the negation of the probability distribution. In this article, therefore, we propose a generalized model of the traditional one, so that it can have more powerful capability to represent the knowledge, and uncertainty measure. In particular, we first define a vector representation of complex-valued distribution. Then, an entropy measure is proposed for the complex-valued distribution, called \mathcal {X} entropy. In this context, a transformation function to acquire the negation of the complex-valued distribution is exploited on the basis of the newly defined \mathcal {X} entropy. Afterward, the properties of this negation function are analyzed, and investigated, as well as some special cases. Finally, we study the negation function on the view from the \mathcal {X} entropy. It is verified that the proposed negation method for the complex-valued distribution is a scheme with a maximal entropy. |
doi_str_mv | 10.1109/TFUZZ.2020.3016723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2588072003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167448</ieee_id><sourcerecordid>2588072003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-284f48aca565111318145b530f330d50b3b8a72f5c49e8b3ad59f31d332d54e53</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwBeASiXOHEydtegONDZAGu2wcdonSNoVO_UfSStu3p2MTJ1vye_bzj5BbBhPGIH5YzdebzYQDhwkCCyOOZ2TEYsECABTnQw8hBmEE4SW58n4LwIRkakQelzXtvi19N7ui6is6qzvXtHv6Yb9MVzQ1bXJq6LSp2tLugk9T9jajz4XvXJH0B8E1uchN6e3NqY7Jej5bTV-DxfLlbfq0CFJUqgu4ErlQJjUylIwxZGoIkEiEHBEyCQkmykQ8l6mIrUrQZDLOkWWIPJPCShyT--Pe1jU_vfWd3ja9q4eTmkulIOLDp4OKH1Wpa7x3NtetKyrj9pqBPpDSf6T0gZQ-kRpMd0dTYa39N8TDUAiFv2n7YxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588072003</pqid></control><display><type>article</type><title>On the Maximum Entropy Negation of a Complex-Valued Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Fuyuan</creator><creatorcontrib>Xiao, Fuyuan</creatorcontrib><description><![CDATA[In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be used only for the negation of the probability distribution. In this article, therefore, we propose a generalized model of the traditional one, so that it can have more powerful capability to represent the knowledge, and uncertainty measure. In particular, we first define a vector representation of complex-valued distribution. Then, an entropy measure is proposed for the complex-valued distribution, called <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. In this context, a transformation function to acquire the negation of the complex-valued distribution is exploited on the basis of the newly defined <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. Afterward, the properties of this negation function are analyzed, and investigated, as well as some special cases. Finally, we study the negation function on the view from the <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. It is verified that the proposed negation method for the complex-valued distribution is a scheme with a maximal entropy.]]></description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2020.3016723</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mathcal {X}</tex-math> </inline-formula> entropy ; complex-valued distribution (CvD) ; Decision making ; Entropy ; knowledge representation ; Maximum entropy ; negation function ; Probability distribution ; uncertain information ; Uncertainty ; uncertainty measure</subject><ispartof>IEEE transactions on fuzzy systems, 2021-11, Vol.29 (11), p.3259-3269</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-284f48aca565111318145b530f330d50b3b8a72f5c49e8b3ad59f31d332d54e53</citedby><cites>FETCH-LOGICAL-c388t-284f48aca565111318145b530f330d50b3b8a72f5c49e8b3ad59f31d332d54e53</cites><orcidid>0000-0002-6303-895X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9167448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Fuyuan</creatorcontrib><title>On the Maximum Entropy Negation of a Complex-Valued Distribution</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description><![CDATA[In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be used only for the negation of the probability distribution. In this article, therefore, we propose a generalized model of the traditional one, so that it can have more powerful capability to represent the knowledge, and uncertainty measure. In particular, we first define a vector representation of complex-valued distribution. Then, an entropy measure is proposed for the complex-valued distribution, called <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. In this context, a transformation function to acquire the negation of the complex-valued distribution is exploited on the basis of the newly defined <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. Afterward, the properties of this negation function are analyzed, and investigated, as well as some special cases. Finally, we study the negation function on the view from the <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. It is verified that the proposed negation method for the complex-valued distribution is a scheme with a maximal entropy.]]></description><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mathcal {X}</tex-math> </inline-formula> entropy</subject><subject>complex-valued distribution (CvD)</subject><subject>Decision making</subject><subject>Entropy</subject><subject>knowledge representation</subject><subject>Maximum entropy</subject><subject>negation function</subject><subject>Probability distribution</subject><subject>uncertain information</subject><subject>Uncertainty</subject><subject>uncertainty measure</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwzAMxSMEEmPwBeASiXOHEydtegONDZAGu2wcdonSNoVO_UfSStu3p2MTJ1vye_bzj5BbBhPGIH5YzdebzYQDhwkCCyOOZ2TEYsECABTnQw8hBmEE4SW58n4LwIRkakQelzXtvi19N7ui6is6qzvXtHv6Yb9MVzQ1bXJq6LSp2tLugk9T9jajz4XvXJH0B8E1uchN6e3NqY7Jej5bTV-DxfLlbfq0CFJUqgu4ErlQJjUylIwxZGoIkEiEHBEyCQkmykQ8l6mIrUrQZDLOkWWIPJPCShyT--Pe1jU_vfWd3ja9q4eTmkulIOLDp4OKH1Wpa7x3NtetKyrj9pqBPpDSf6T0gZQ-kRpMd0dTYa39N8TDUAiFv2n7YxM</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Xiao, Fuyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6303-895X</orcidid></search><sort><creationdate>20211101</creationdate><title>On the Maximum Entropy Negation of a Complex-Valued Distribution</title><author>Xiao, Fuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-284f48aca565111318145b530f330d50b3b8a72f5c49e8b3ad59f31d332d54e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mathcal {X}</tex-math> </inline-formula> entropy</topic><topic>complex-valued distribution (CvD)</topic><topic>Decision making</topic><topic>Entropy</topic><topic>knowledge representation</topic><topic>Maximum entropy</topic><topic>negation function</topic><topic>Probability distribution</topic><topic>uncertain information</topic><topic>Uncertainty</topic><topic>uncertainty measure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Fuyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Fuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Maximum Entropy Negation of a Complex-Valued Distribution</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>29</volume><issue>11</issue><spage>3259</spage><epage>3269</epage><pages>3259-3269</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract><![CDATA[In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be used only for the negation of the probability distribution. In this article, therefore, we propose a generalized model of the traditional one, so that it can have more powerful capability to represent the knowledge, and uncertainty measure. In particular, we first define a vector representation of complex-valued distribution. Then, an entropy measure is proposed for the complex-valued distribution, called <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. In this context, a transformation function to acquire the negation of the complex-valued distribution is exploited on the basis of the newly defined <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. Afterward, the properties of this negation function are analyzed, and investigated, as well as some special cases. Finally, we study the negation function on the view from the <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. It is verified that the proposed negation method for the complex-valued distribution is a scheme with a maximal entropy.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2020.3016723</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6303-895X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2021-11, Vol.29 (11), p.3259-3269 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_journals_2588072003 |
source | IEEE Electronic Library (IEL) |
subjects | <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mathcal {X}</tex-math> </inline-formula> entropy complex-valued distribution (CvD) Decision making Entropy knowledge representation Maximum entropy negation function Probability distribution uncertain information Uncertainty uncertainty measure |
title | On the Maximum Entropy Negation of a Complex-Valued Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Maximum%20Entropy%20Negation%20of%20a%20Complex-Valued%20Distribution&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Xiao,%20Fuyuan&rft.date=2021-11-01&rft.volume=29&rft.issue=11&rft.spage=3259&rft.epage=3269&rft.pages=3259-3269&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2020.3016723&rft_dat=%3Cproquest_RIE%3E2588072003%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588072003&rft_id=info:pmid/&rft_ieee_id=9167448&rfr_iscdi=true |