On the Maximum Entropy Negation of a Complex-Valued Distribution

In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2021-11, Vol.29 (11), p.3259-3269
1. Verfasser: Xiao, Fuyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3269
container_issue 11
container_start_page 3259
container_title IEEE transactions on fuzzy systems
container_volume 29
creator Xiao, Fuyuan
description In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be used only for the negation of the probability distribution. In this article, therefore, we propose a generalized model of the traditional one, so that it can have more powerful capability to represent the knowledge, and uncertainty measure. In particular, we first define a vector representation of complex-valued distribution. Then, an entropy measure is proposed for the complex-valued distribution, called \mathcal {X} entropy. In this context, a transformation function to acquire the negation of the complex-valued distribution is exploited on the basis of the newly defined \mathcal {X} entropy. Afterward, the properties of this negation function are analyzed, and investigated, as well as some special cases. Finally, we study the negation function on the view from the \mathcal {X} entropy. It is verified that the proposed negation method for the complex-valued distribution is a scheme with a maximal entropy.
doi_str_mv 10.1109/TFUZZ.2020.3016723
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2588072003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9167448</ieee_id><sourcerecordid>2588072003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-284f48aca565111318145b530f330d50b3b8a72f5c49e8b3ad59f31d332d54e53</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEEmPwBeASiXOHEydtegONDZAGu2wcdonSNoVO_UfSStu3p2MTJ1vye_bzj5BbBhPGIH5YzdebzYQDhwkCCyOOZ2TEYsECABTnQw8hBmEE4SW58n4LwIRkakQelzXtvi19N7ui6is6qzvXtHv6Yb9MVzQ1bXJq6LSp2tLugk9T9jajz4XvXJH0B8E1uchN6e3NqY7Jej5bTV-DxfLlbfq0CFJUqgu4ErlQJjUylIwxZGoIkEiEHBEyCQkmykQ8l6mIrUrQZDLOkWWIPJPCShyT--Pe1jU_vfWd3ja9q4eTmkulIOLDp4OKH1Wpa7x3NtetKyrj9pqBPpDSf6T0gZQ-kRpMd0dTYa39N8TDUAiFv2n7YxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588072003</pqid></control><display><type>article</type><title>On the Maximum Entropy Negation of a Complex-Valued Distribution</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Fuyuan</creator><creatorcontrib>Xiao, Fuyuan</creatorcontrib><description><![CDATA[In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be used only for the negation of the probability distribution. In this article, therefore, we propose a generalized model of the traditional one, so that it can have more powerful capability to represent the knowledge, and uncertainty measure. In particular, we first define a vector representation of complex-valued distribution. Then, an entropy measure is proposed for the complex-valued distribution, called <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. In this context, a transformation function to acquire the negation of the complex-valued distribution is exploited on the basis of the newly defined <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. Afterward, the properties of this negation function are analyzed, and investigated, as well as some special cases. Finally, we study the negation function on the view from the <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. It is verified that the proposed negation method for the complex-valued distribution is a scheme with a maximal entropy.]]></description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2020.3016723</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathcal {X}&lt;/tex-math&gt; &lt;/inline-formula&gt; entropy ; complex-valued distribution (CvD) ; Decision making ; Entropy ; knowledge representation ; Maximum entropy ; negation function ; Probability distribution ; uncertain information ; Uncertainty ; uncertainty measure</subject><ispartof>IEEE transactions on fuzzy systems, 2021-11, Vol.29 (11), p.3259-3269</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-284f48aca565111318145b530f330d50b3b8a72f5c49e8b3ad59f31d332d54e53</citedby><cites>FETCH-LOGICAL-c388t-284f48aca565111318145b530f330d50b3b8a72f5c49e8b3ad59f31d332d54e53</cites><orcidid>0000-0002-6303-895X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9167448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9167448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Fuyuan</creatorcontrib><title>On the Maximum Entropy Negation of a Complex-Valued Distribution</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description><![CDATA[In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be used only for the negation of the probability distribution. In this article, therefore, we propose a generalized model of the traditional one, so that it can have more powerful capability to represent the knowledge, and uncertainty measure. In particular, we first define a vector representation of complex-valued distribution. Then, an entropy measure is proposed for the complex-valued distribution, called <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. In this context, a transformation function to acquire the negation of the complex-valued distribution is exploited on the basis of the newly defined <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. Afterward, the properties of this negation function are analyzed, and investigated, as well as some special cases. Finally, we study the negation function on the view from the <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. It is verified that the proposed negation method for the complex-valued distribution is a scheme with a maximal entropy.]]></description><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathcal {X}&lt;/tex-math&gt; &lt;/inline-formula&gt; entropy</subject><subject>complex-valued distribution (CvD)</subject><subject>Decision making</subject><subject>Entropy</subject><subject>knowledge representation</subject><subject>Maximum entropy</subject><subject>negation function</subject><subject>Probability distribution</subject><subject>uncertain information</subject><subject>Uncertainty</subject><subject>uncertainty measure</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwzAMxSMEEmPwBeASiXOHEydtegONDZAGu2wcdonSNoVO_UfSStu3p2MTJ1vye_bzj5BbBhPGIH5YzdebzYQDhwkCCyOOZ2TEYsECABTnQw8hBmEE4SW58n4LwIRkakQelzXtvi19N7ui6is6qzvXtHv6Yb9MVzQ1bXJq6LSp2tLugk9T9jajz4XvXJH0B8E1uchN6e3NqY7Jej5bTV-DxfLlbfq0CFJUqgu4ErlQJjUylIwxZGoIkEiEHBEyCQkmykQ8l6mIrUrQZDLOkWWIPJPCShyT--Pe1jU_vfWd3ja9q4eTmkulIOLDp4OKH1Wpa7x3NtetKyrj9pqBPpDSf6T0gZQ-kRpMd0dTYa39N8TDUAiFv2n7YxM</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Xiao, Fuyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6303-895X</orcidid></search><sort><creationdate>20211101</creationdate><title>On the Maximum Entropy Negation of a Complex-Valued Distribution</title><author>Xiao, Fuyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-284f48aca565111318145b530f330d50b3b8a72f5c49e8b3ad59f31d332d54e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; mathcal {X}&lt;/tex-math&gt; &lt;/inline-formula&gt; entropy</topic><topic>complex-valued distribution (CvD)</topic><topic>Decision making</topic><topic>Entropy</topic><topic>knowledge representation</topic><topic>Maximum entropy</topic><topic>negation function</topic><topic>Probability distribution</topic><topic>uncertain information</topic><topic>Uncertainty</topic><topic>uncertainty measure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Fuyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Fuyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Maximum Entropy Negation of a Complex-Valued Distribution</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>29</volume><issue>11</issue><spage>3259</spage><epage>3269</epage><pages>3259-3269</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract><![CDATA[In real applications of artificial and intelligent decision-making systems, how to represent the knowledge involved with uncertain information is still an open issue. The negation method has great significance to address this issue from another perspective. However, it has the limitation that can be used only for the negation of the probability distribution. In this article, therefore, we propose a generalized model of the traditional one, so that it can have more powerful capability to represent the knowledge, and uncertainty measure. In particular, we first define a vector representation of complex-valued distribution. Then, an entropy measure is proposed for the complex-valued distribution, called <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. In this context, a transformation function to acquire the negation of the complex-valued distribution is exploited on the basis of the newly defined <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. Afterward, the properties of this negation function are analyzed, and investigated, as well as some special cases. Finally, we study the negation function on the view from the <inline-formula><tex-math notation="LaTeX">\mathcal {X}</tex-math></inline-formula> entropy. It is verified that the proposed negation method for the complex-valued distribution is a scheme with a maximal entropy.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2020.3016723</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6303-895X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2021-11, Vol.29 (11), p.3259-3269
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_2588072003
source IEEE Electronic Library (IEL)
subjects <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> mathcal {X}</tex-math> </inline-formula> entropy
complex-valued distribution (CvD)
Decision making
Entropy
knowledge representation
Maximum entropy
negation function
Probability distribution
uncertain information
Uncertainty
uncertainty measure
title On the Maximum Entropy Negation of a Complex-Valued Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Maximum%20Entropy%20Negation%20of%20a%20Complex-Valued%20Distribution&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Xiao,%20Fuyuan&rft.date=2021-11-01&rft.volume=29&rft.issue=11&rft.spage=3259&rft.epage=3269&rft.pages=3259-3269&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2020.3016723&rft_dat=%3Cproquest_RIE%3E2588072003%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2588072003&rft_id=info:pmid/&rft_ieee_id=9167448&rfr_iscdi=true