Chemical profiles of heated perilla meal extracts and their antioxidant activities
Summary Chemical profiles of aqueous or ethanolic extracts of 140, 170 and 200 °C‐heated perilla meal were identified by GC‐MS, and antioxidant properties of the extracts were observed via in vitro assays and in bulk oil or oil‐in‐water (O/W) emulsion. A total of 22 and 27 chemicals were found in aq...
Gespeichert in:
Veröffentlicht in: | International journal of food science & technology 2021-10, Vol.56 (10), p.5130-5138 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5138 |
---|---|
container_issue | 10 |
container_start_page | 5130 |
container_title | International journal of food science & technology |
container_volume | 56 |
creator | Park, JungYong Seo, HeeBin La, JinWook Yang, Seung‐Ok Lee, YoonHee Lee, JaeHwan |
description | Summary
Chemical profiles of aqueous or ethanolic extracts of 140, 170 and 200 °C‐heated perilla meal were identified by GC‐MS, and antioxidant properties of the extracts were observed via in vitro assays and in bulk oil or oil‐in‐water (O/W) emulsion. A total of 22 and 27 chemicals were found in aqueous and ethanolic extracts from non‐heated samples, respectively. As the heating temperature increased to 200 °C, the carbohydrate and derivative contents decreased significantly (P 0.05). In the case of O/W emulsions, aqueous extracts inhibited lipid oxidation more efficiently than ethanolic extracts at 50 °C. In particular, heat treatment decreased the antioxidant activities of ethanolic extracts and not aqueous extracts in the O/W emulsion system. Aqueous extracts are recommended in moisture‐rich emulsion‐based foods while ethanolic extracts are more suitable in a lipid‐rich environment for enhancing oxidative stability.
Overall scheme of this study |
doi_str_mv | 10.1111/ijfs.15155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2587868985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587868985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3015-929e2edd9e8ae5bb504ce406009d9676e7a80bfd7315a2f54974be8949554e503</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsbf0HAnTA1yeTOJEspVisFwcc6ZCZ3aMq0U5Optv_e1HHt3ZwL57sPDiHXnE14qju_auKEAwc4ISOeF5CJQvBTMmIaWAZS5OfkIsYVY0zkpRyR1-kS1762Ld2GrvEtRto1dIm2R0e3GHzbWrrG5OO-D7buI7UbR_sl-pC63nd775LSZPkv33uMl-SssW3Eqz8dk4_Zw_v0KVu8PM6n94uszhmHTAuNAp3TqCxCVQGTNUpWMKadLsoCS6tY1bgy52BFA1KXskKlpQaQCCwfk5thb_r8c4exN6tuFzbppBGgSlUorSBRtwNVhy7GgI3ZBr-24WA4M8fMzDEz85tZgvkAf6ckDv-QZv48extmfgBqg27C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587868985</pqid></control><display><type>article</type><title>Chemical profiles of heated perilla meal extracts and their antioxidant activities</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford Journals Open Access Collection</source><creator>Park, JungYong ; Seo, HeeBin ; La, JinWook ; Yang, Seung‐Ok ; Lee, YoonHee ; Lee, JaeHwan</creator><creatorcontrib>Park, JungYong ; Seo, HeeBin ; La, JinWook ; Yang, Seung‐Ok ; Lee, YoonHee ; Lee, JaeHwan</creatorcontrib><description>Summary
Chemical profiles of aqueous or ethanolic extracts of 140, 170 and 200 °C‐heated perilla meal were identified by GC‐MS, and antioxidant properties of the extracts were observed via in vitro assays and in bulk oil or oil‐in‐water (O/W) emulsion. A total of 22 and 27 chemicals were found in aqueous and ethanolic extracts from non‐heated samples, respectively. As the heating temperature increased to 200 °C, the carbohydrate and derivative contents decreased significantly (P < 0.05), whereas rosmarinic acid concentration decreased in both extracts. Ethanolic extracts possessed higher antioxidant activities than aqueous extracts based on the results of radical scavenging and ferric‐reducing antioxidant power assays and the Rancimat assay, but there were no significant differences among samples (P > 0.05). In the case of O/W emulsions, aqueous extracts inhibited lipid oxidation more efficiently than ethanolic extracts at 50 °C. In particular, heat treatment decreased the antioxidant activities of ethanolic extracts and not aqueous extracts in the O/W emulsion system. Aqueous extracts are recommended in moisture‐rich emulsion‐based foods while ethanolic extracts are more suitable in a lipid‐rich environment for enhancing oxidative stability.
Overall scheme of this study</description><identifier>ISSN: 0950-5423</identifier><identifier>EISSN: 1365-2621</identifier><identifier>DOI: 10.1111/ijfs.15155</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Antioxidant activity ; Antioxidants ; Assaying ; Carbohydrates ; chemical profile ; Emulsions ; Heat treatment ; Heat treatments ; heated perilla meal ; lipid oxidation ; Lipid peroxidation ; Lipids ; matrix ; Oxidation ; Rosmarinic acid ; Scavenging</subject><ispartof>International journal of food science & technology, 2021-10, Vol.56 (10), p.5130-5138</ispartof><rights>2021 Institute of Food Science and Technology</rights><rights>International Journal of Food Science and Technology © 2021 Institute of Food Science and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3015-929e2edd9e8ae5bb504ce406009d9676e7a80bfd7315a2f54974be8949554e503</citedby><cites>FETCH-LOGICAL-c3015-929e2edd9e8ae5bb504ce406009d9676e7a80bfd7315a2f54974be8949554e503</cites><orcidid>0000-0003-0118-6233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijfs.15155$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijfs.15155$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Park, JungYong</creatorcontrib><creatorcontrib>Seo, HeeBin</creatorcontrib><creatorcontrib>La, JinWook</creatorcontrib><creatorcontrib>Yang, Seung‐Ok</creatorcontrib><creatorcontrib>Lee, YoonHee</creatorcontrib><creatorcontrib>Lee, JaeHwan</creatorcontrib><title>Chemical profiles of heated perilla meal extracts and their antioxidant activities</title><title>International journal of food science & technology</title><description>Summary
Chemical profiles of aqueous or ethanolic extracts of 140, 170 and 200 °C‐heated perilla meal were identified by GC‐MS, and antioxidant properties of the extracts were observed via in vitro assays and in bulk oil or oil‐in‐water (O/W) emulsion. A total of 22 and 27 chemicals were found in aqueous and ethanolic extracts from non‐heated samples, respectively. As the heating temperature increased to 200 °C, the carbohydrate and derivative contents decreased significantly (P < 0.05), whereas rosmarinic acid concentration decreased in both extracts. Ethanolic extracts possessed higher antioxidant activities than aqueous extracts based on the results of radical scavenging and ferric‐reducing antioxidant power assays and the Rancimat assay, but there were no significant differences among samples (P > 0.05). In the case of O/W emulsions, aqueous extracts inhibited lipid oxidation more efficiently than ethanolic extracts at 50 °C. In particular, heat treatment decreased the antioxidant activities of ethanolic extracts and not aqueous extracts in the O/W emulsion system. Aqueous extracts are recommended in moisture‐rich emulsion‐based foods while ethanolic extracts are more suitable in a lipid‐rich environment for enhancing oxidative stability.
Overall scheme of this study</description><subject>Antioxidant activity</subject><subject>Antioxidants</subject><subject>Assaying</subject><subject>Carbohydrates</subject><subject>chemical profile</subject><subject>Emulsions</subject><subject>Heat treatment</subject><subject>Heat treatments</subject><subject>heated perilla meal</subject><subject>lipid oxidation</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>matrix</subject><subject>Oxidation</subject><subject>Rosmarinic acid</subject><subject>Scavenging</subject><issn>0950-5423</issn><issn>1365-2621</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKsbf0HAnTA1yeTOJEspVisFwcc6ZCZ3aMq0U5Optv_e1HHt3ZwL57sPDiHXnE14qju_auKEAwc4ISOeF5CJQvBTMmIaWAZS5OfkIsYVY0zkpRyR1-kS1762Ld2GrvEtRto1dIm2R0e3GHzbWrrG5OO-D7buI7UbR_sl-pC63nd775LSZPkv33uMl-SssW3Eqz8dk4_Zw_v0KVu8PM6n94uszhmHTAuNAp3TqCxCVQGTNUpWMKadLsoCS6tY1bgy52BFA1KXskKlpQaQCCwfk5thb_r8c4exN6tuFzbppBGgSlUorSBRtwNVhy7GgI3ZBr-24WA4M8fMzDEz85tZgvkAf6ckDv-QZv48extmfgBqg27C</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Park, JungYong</creator><creator>Seo, HeeBin</creator><creator>La, JinWook</creator><creator>Yang, Seung‐Ok</creator><creator>Lee, YoonHee</creator><creator>Lee, JaeHwan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0118-6233</orcidid></search><sort><creationdate>202110</creationdate><title>Chemical profiles of heated perilla meal extracts and their antioxidant activities</title><author>Park, JungYong ; Seo, HeeBin ; La, JinWook ; Yang, Seung‐Ok ; Lee, YoonHee ; Lee, JaeHwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3015-929e2edd9e8ae5bb504ce406009d9676e7a80bfd7315a2f54974be8949554e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antioxidant activity</topic><topic>Antioxidants</topic><topic>Assaying</topic><topic>Carbohydrates</topic><topic>chemical profile</topic><topic>Emulsions</topic><topic>Heat treatment</topic><topic>Heat treatments</topic><topic>heated perilla meal</topic><topic>lipid oxidation</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>matrix</topic><topic>Oxidation</topic><topic>Rosmarinic acid</topic><topic>Scavenging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, JungYong</creatorcontrib><creatorcontrib>Seo, HeeBin</creatorcontrib><creatorcontrib>La, JinWook</creatorcontrib><creatorcontrib>Yang, Seung‐Ok</creatorcontrib><creatorcontrib>Lee, YoonHee</creatorcontrib><creatorcontrib>Lee, JaeHwan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of food science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, JungYong</au><au>Seo, HeeBin</au><au>La, JinWook</au><au>Yang, Seung‐Ok</au><au>Lee, YoonHee</au><au>Lee, JaeHwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical profiles of heated perilla meal extracts and their antioxidant activities</atitle><jtitle>International journal of food science & technology</jtitle><date>2021-10</date><risdate>2021</risdate><volume>56</volume><issue>10</issue><spage>5130</spage><epage>5138</epage><pages>5130-5138</pages><issn>0950-5423</issn><eissn>1365-2621</eissn><abstract>Summary
Chemical profiles of aqueous or ethanolic extracts of 140, 170 and 200 °C‐heated perilla meal were identified by GC‐MS, and antioxidant properties of the extracts were observed via in vitro assays and in bulk oil or oil‐in‐water (O/W) emulsion. A total of 22 and 27 chemicals were found in aqueous and ethanolic extracts from non‐heated samples, respectively. As the heating temperature increased to 200 °C, the carbohydrate and derivative contents decreased significantly (P < 0.05), whereas rosmarinic acid concentration decreased in both extracts. Ethanolic extracts possessed higher antioxidant activities than aqueous extracts based on the results of radical scavenging and ferric‐reducing antioxidant power assays and the Rancimat assay, but there were no significant differences among samples (P > 0.05). In the case of O/W emulsions, aqueous extracts inhibited lipid oxidation more efficiently than ethanolic extracts at 50 °C. In particular, heat treatment decreased the antioxidant activities of ethanolic extracts and not aqueous extracts in the O/W emulsion system. Aqueous extracts are recommended in moisture‐rich emulsion‐based foods while ethanolic extracts are more suitable in a lipid‐rich environment for enhancing oxidative stability.
Overall scheme of this study</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijfs.15155</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0118-6233</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-5423 |
ispartof | International journal of food science & technology, 2021-10, Vol.56 (10), p.5130-5138 |
issn | 0950-5423 1365-2621 |
language | eng |
recordid | cdi_proquest_journals_2587868985 |
source | Wiley Online Library Journals Frontfile Complete; Oxford Journals Open Access Collection |
subjects | Antioxidant activity Antioxidants Assaying Carbohydrates chemical profile Emulsions Heat treatment Heat treatments heated perilla meal lipid oxidation Lipid peroxidation Lipids matrix Oxidation Rosmarinic acid Scavenging |
title | Chemical profiles of heated perilla meal extracts and their antioxidant activities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20profiles%20of%20heated%20perilla%20meal%20extracts%20and%20their%20antioxidant%20activities&rft.jtitle=International%20journal%20of%20food%20science%20&%20technology&rft.au=Park,%20JungYong&rft.date=2021-10&rft.volume=56&rft.issue=10&rft.spage=5130&rft.epage=5138&rft.pages=5130-5138&rft.issn=0950-5423&rft.eissn=1365-2621&rft_id=info:doi/10.1111/ijfs.15155&rft_dat=%3Cproquest_cross%3E2587868985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587868985&rft_id=info:pmid/&rfr_iscdi=true |