Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum
Background While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective We report application and assessment of four different techniques for evaluating residual st...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2021-10, Vol.61 (8), p.1309-1322 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1322 |
---|---|
container_issue | 8 |
container_start_page | 1309 |
container_title | Experimental mechanics |
container_volume | 61 |
creator | Chighizola, C. R. D’Elia, C. R. Weber, D. Kirsch, B. Aurich, J. C. Linke, B. S. Hill, M. R. |
description | Background
While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement.
Objective
We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts.
Methods
The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin
2
(ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample.
Results
Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin
2
(ψ) XRD. At shallow depths ( |
doi_str_mv | 10.1007/s11340-021-00734-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2587069667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587069667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-86c9e59d928560140a70dee10f4f5a8c1f8074b44b5a221929aef7ea82ceed073</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczRJk83usZSqhapg9RymuxPdsn9qshH89qau4M3T8OD33sw8Qi4Fvxacm5sgxExxxqVgSc4U00dkIowSTJpMH5MJ50IxlWtxSs5C2PEDZeSEwKob0Lc4vPcVXfTtHnwd-o5CV9HlJzQRhjrJ3tEHhBA9VvQRwdNN9A5KpM8Y6ipCQzeDxxBo3dGHumkSNm9iW3exPScnDpqAF79zSl5vly-Le7Z-ulst5mtWKlkMLM_KAnVRFTLXWTqWg-EVouBOOQ15KVzOjdoqtdUgpShkAegMQi5LxCp9MyVXY-7e9x8Rw2B3ffRdWmmlzg3Piiw7UHKkSt-H4NHZva9b8F9WcHuo0o5V2lSl_anS6mSajaaQ4O4N_V_0P65vznd23A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587069667</pqid></control><display><type>article</type><title>Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chighizola, C. R. ; D’Elia, C. R. ; Weber, D. ; Kirsch, B. ; Aurich, J. C. ; Linke, B. S. ; Hill, M. R.</creator><creatorcontrib>Chighizola, C. R. ; D’Elia, C. R. ; Weber, D. ; Kirsch, B. ; Aurich, J. C. ; Linke, B. S. ; Hill, M. R.</creatorcontrib><description>Background
While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement.
Objective
We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts.
Methods
The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin
2
(ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample.
Results
Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin
2
(ψ) XRD. At shallow depths (< 0.03 mm), sin
2
(ψ) XRD data have the best repeatability (< 15 MPa), but at larger depths (> 0.04 mm) hole-drilling and slotting have the best repeatability (< 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed.
Conclusion
Hole-drilling, slotting, and sin
2
(ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-021-00734-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Cutting speed ; Distortion ; Drilling ; Dynamical Systems ; Engineering ; Evaluation ; Flat surfaces ; Lasers ; Optical Devices ; Optics ; Photonics ; Reproducibility ; Research Paper ; Residual stress ; Solid Mechanics ; Stress analysis ; Vibration ; X-ray diffraction</subject><ispartof>Experimental mechanics, 2021-10, Vol.61 (8), p.1309-1322</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-86c9e59d928560140a70dee10f4f5a8c1f8074b44b5a221929aef7ea82ceed073</citedby><cites>FETCH-LOGICAL-c429t-86c9e59d928560140a70dee10f4f5a8c1f8074b44b5a221929aef7ea82ceed073</cites><orcidid>0000-0002-9168-211X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-021-00734-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-021-00734-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chighizola, C. R.</creatorcontrib><creatorcontrib>D’Elia, C. R.</creatorcontrib><creatorcontrib>Weber, D.</creatorcontrib><creatorcontrib>Kirsch, B.</creatorcontrib><creatorcontrib>Aurich, J. C.</creatorcontrib><creatorcontrib>Linke, B. S.</creatorcontrib><creatorcontrib>Hill, M. R.</creatorcontrib><title>Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>Background
While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement.
Objective
We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts.
Methods
The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin
2
(ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample.
Results
Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin
2
(ψ) XRD. At shallow depths (< 0.03 mm), sin
2
(ψ) XRD data have the best repeatability (< 15 MPa), but at larger depths (> 0.04 mm) hole-drilling and slotting have the best repeatability (< 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed.
Conclusion
Hole-drilling, slotting, and sin
2
(ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion.</description><subject>Aluminum</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Cutting speed</subject><subject>Distortion</subject><subject>Drilling</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Flat surfaces</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Reproducibility</subject><subject>Research Paper</subject><subject>Residual stress</subject><subject>Solid Mechanics</subject><subject>Stress analysis</subject><subject>Vibration</subject><subject>X-ray diffraction</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczRJk83usZSqhapg9RymuxPdsn9qshH89qau4M3T8OD33sw8Qi4Fvxacm5sgxExxxqVgSc4U00dkIowSTJpMH5MJ50IxlWtxSs5C2PEDZeSEwKob0Lc4vPcVXfTtHnwd-o5CV9HlJzQRhjrJ3tEHhBA9VvQRwdNN9A5KpM8Y6ipCQzeDxxBo3dGHumkSNm9iW3exPScnDpqAF79zSl5vly-Le7Z-ulst5mtWKlkMLM_KAnVRFTLXWTqWg-EVouBOOQ15KVzOjdoqtdUgpShkAegMQi5LxCp9MyVXY-7e9x8Rw2B3ffRdWmmlzg3Piiw7UHKkSt-H4NHZva9b8F9WcHuo0o5V2lSl_anS6mSajaaQ4O4N_V_0P65vznd23A</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chighizola, C. R.</creator><creator>D’Elia, C. R.</creator><creator>Weber, D.</creator><creator>Kirsch, B.</creator><creator>Aurich, J. C.</creator><creator>Linke, B. S.</creator><creator>Hill, M. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9168-211X</orcidid></search><sort><creationdate>20211001</creationdate><title>Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum</title><author>Chighizola, C. R. ; D’Elia, C. R. ; Weber, D. ; Kirsch, B. ; Aurich, J. C. ; Linke, B. S. ; Hill, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-86c9e59d928560140a70dee10f4f5a8c1f8074b44b5a221929aef7ea82ceed073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Cutting speed</topic><topic>Distortion</topic><topic>Drilling</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Flat surfaces</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Reproducibility</topic><topic>Research Paper</topic><topic>Residual stress</topic><topic>Solid Mechanics</topic><topic>Stress analysis</topic><topic>Vibration</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chighizola, C. R.</creatorcontrib><creatorcontrib>D’Elia, C. R.</creatorcontrib><creatorcontrib>Weber, D.</creatorcontrib><creatorcontrib>Kirsch, B.</creatorcontrib><creatorcontrib>Aurich, J. C.</creatorcontrib><creatorcontrib>Linke, B. S.</creatorcontrib><creatorcontrib>Hill, M. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chighizola, C. R.</au><au>D’Elia, C. R.</au><au>Weber, D.</au><au>Kirsch, B.</au><au>Aurich, J. C.</au><au>Linke, B. S.</au><au>Hill, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>61</volume><issue>8</issue><spage>1309</spage><epage>1322</epage><pages>1309-1322</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>Background
While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement.
Objective
We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts.
Methods
The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin
2
(ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample.
Results
Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin
2
(ψ) XRD. At shallow depths (< 0.03 mm), sin
2
(ψ) XRD data have the best repeatability (< 15 MPa), but at larger depths (> 0.04 mm) hole-drilling and slotting have the best repeatability (< 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed.
Conclusion
Hole-drilling, slotting, and sin
2
(ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-021-00734-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9168-211X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4851 |
ispartof | Experimental mechanics, 2021-10, Vol.61 (8), p.1309-1322 |
issn | 0014-4851 1741-2765 |
language | eng |
recordid | cdi_proquest_journals_2587069667 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Control Cutting speed Distortion Drilling Dynamical Systems Engineering Evaluation Flat surfaces Lasers Optical Devices Optics Photonics Reproducibility Research Paper Residual stress Solid Mechanics Stress analysis Vibration X-ray diffraction |
title | Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermethod%20Comparison%20and%20Evaluation%20of%20Measured%20Near%20Surface%20Residual%20Stress%20in%20Milled%20Aluminum&rft.jtitle=Experimental%20mechanics&rft.au=Chighizola,%20C.%20R.&rft.date=2021-10-01&rft.volume=61&rft.issue=8&rft.spage=1309&rft.epage=1322&rft.pages=1309-1322&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-021-00734-5&rft_dat=%3Cproquest_cross%3E2587069667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587069667&rft_id=info:pmid/&rfr_iscdi=true |