Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum

Background While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective We report application and assessment of four different techniques for evaluating residual st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 2021-10, Vol.61 (8), p.1309-1322
Hauptverfasser: Chighizola, C. R., D’Elia, C. R., Weber, D., Kirsch, B., Aurich, J. C., Linke, B. S., Hill, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1322
container_issue 8
container_start_page 1309
container_title Experimental mechanics
container_volume 61
creator Chighizola, C. R.
D’Elia, C. R.
Weber, D.
Kirsch, B.
Aurich, J. C.
Linke, B. S.
Hill, M. R.
description Background While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts. Methods The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin 2 (ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample. Results Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin 2 (ψ) XRD. At shallow depths (
doi_str_mv 10.1007/s11340-021-00734-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2587069667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587069667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-86c9e59d928560140a70dee10f4f5a8c1f8074b44b5a221929aef7ea82ceed073</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczRJk83usZSqhapg9RymuxPdsn9qshH89qau4M3T8OD33sw8Qi4Fvxacm5sgxExxxqVgSc4U00dkIowSTJpMH5MJ50IxlWtxSs5C2PEDZeSEwKob0Lc4vPcVXfTtHnwd-o5CV9HlJzQRhjrJ3tEHhBA9VvQRwdNN9A5KpM8Y6ipCQzeDxxBo3dGHumkSNm9iW3exPScnDpqAF79zSl5vly-Le7Z-ulst5mtWKlkMLM_KAnVRFTLXWTqWg-EVouBOOQ15KVzOjdoqtdUgpShkAegMQi5LxCp9MyVXY-7e9x8Rw2B3ffRdWmmlzg3Piiw7UHKkSt-H4NHZva9b8F9WcHuo0o5V2lSl_anS6mSajaaQ4O4N_V_0P65vznd23A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587069667</pqid></control><display><type>article</type><title>Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chighizola, C. R. ; D’Elia, C. R. ; Weber, D. ; Kirsch, B. ; Aurich, J. C. ; Linke, B. S. ; Hill, M. R.</creator><creatorcontrib>Chighizola, C. R. ; D’Elia, C. R. ; Weber, D. ; Kirsch, B. ; Aurich, J. C. ; Linke, B. S. ; Hill, M. R.</creatorcontrib><description>Background While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts. Methods The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin 2 (ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample. Results Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin 2 (ψ) XRD. At shallow depths (&lt; 0.03 mm), sin 2 (ψ) XRD data have the best repeatability (&lt; 15 MPa), but at larger depths (&gt; 0.04 mm) hole-drilling and slotting have the best repeatability (&lt; 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed. Conclusion Hole-drilling, slotting, and sin 2 (ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-021-00734-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Biomedical Engineering and Bioengineering ; Characterization and Evaluation of Materials ; Control ; Cutting speed ; Distortion ; Drilling ; Dynamical Systems ; Engineering ; Evaluation ; Flat surfaces ; Lasers ; Optical Devices ; Optics ; Photonics ; Reproducibility ; Research Paper ; Residual stress ; Solid Mechanics ; Stress analysis ; Vibration ; X-ray diffraction</subject><ispartof>Experimental mechanics, 2021-10, Vol.61 (8), p.1309-1322</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-86c9e59d928560140a70dee10f4f5a8c1f8074b44b5a221929aef7ea82ceed073</citedby><cites>FETCH-LOGICAL-c429t-86c9e59d928560140a70dee10f4f5a8c1f8074b44b5a221929aef7ea82ceed073</cites><orcidid>0000-0002-9168-211X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-021-00734-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-021-00734-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chighizola, C. R.</creatorcontrib><creatorcontrib>D’Elia, C. R.</creatorcontrib><creatorcontrib>Weber, D.</creatorcontrib><creatorcontrib>Kirsch, B.</creatorcontrib><creatorcontrib>Aurich, J. C.</creatorcontrib><creatorcontrib>Linke, B. S.</creatorcontrib><creatorcontrib>Hill, M. R.</creatorcontrib><title>Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>Background While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts. Methods The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin 2 (ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample. Results Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin 2 (ψ) XRD. At shallow depths (&lt; 0.03 mm), sin 2 (ψ) XRD data have the best repeatability (&lt; 15 MPa), but at larger depths (&gt; 0.04 mm) hole-drilling and slotting have the best repeatability (&lt; 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed. Conclusion Hole-drilling, slotting, and sin 2 (ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion.</description><subject>Aluminum</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Cutting speed</subject><subject>Distortion</subject><subject>Drilling</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Evaluation</subject><subject>Flat surfaces</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Reproducibility</subject><subject>Research Paper</subject><subject>Residual stress</subject><subject>Solid Mechanics</subject><subject>Stress analysis</subject><subject>Vibration</subject><subject>X-ray diffraction</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczRJk83usZSqhapg9RymuxPdsn9qshH89qau4M3T8OD33sw8Qi4Fvxacm5sgxExxxqVgSc4U00dkIowSTJpMH5MJ50IxlWtxSs5C2PEDZeSEwKob0Lc4vPcVXfTtHnwd-o5CV9HlJzQRhjrJ3tEHhBA9VvQRwdNN9A5KpM8Y6ipCQzeDxxBo3dGHumkSNm9iW3exPScnDpqAF79zSl5vly-Le7Z-ulst5mtWKlkMLM_KAnVRFTLXWTqWg-EVouBOOQ15KVzOjdoqtdUgpShkAegMQi5LxCp9MyVXY-7e9x8Rw2B3ffRdWmmlzg3Piiw7UHKkSt-H4NHZva9b8F9WcHuo0o5V2lSl_anS6mSajaaQ4O4N_V_0P65vznd23A</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chighizola, C. R.</creator><creator>D’Elia, C. R.</creator><creator>Weber, D.</creator><creator>Kirsch, B.</creator><creator>Aurich, J. C.</creator><creator>Linke, B. S.</creator><creator>Hill, M. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9168-211X</orcidid></search><sort><creationdate>20211001</creationdate><title>Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum</title><author>Chighizola, C. R. ; D’Elia, C. R. ; Weber, D. ; Kirsch, B. ; Aurich, J. C. ; Linke, B. S. ; Hill, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-86c9e59d928560140a70dee10f4f5a8c1f8074b44b5a221929aef7ea82ceed073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Cutting speed</topic><topic>Distortion</topic><topic>Drilling</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Evaluation</topic><topic>Flat surfaces</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Reproducibility</topic><topic>Research Paper</topic><topic>Residual stress</topic><topic>Solid Mechanics</topic><topic>Stress analysis</topic><topic>Vibration</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chighizola, C. R.</creatorcontrib><creatorcontrib>D’Elia, C. R.</creatorcontrib><creatorcontrib>Weber, D.</creatorcontrib><creatorcontrib>Kirsch, B.</creatorcontrib><creatorcontrib>Aurich, J. C.</creatorcontrib><creatorcontrib>Linke, B. S.</creatorcontrib><creatorcontrib>Hill, M. R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chighizola, C. R.</au><au>D’Elia, C. R.</au><au>Weber, D.</au><au>Kirsch, B.</au><au>Aurich, J. C.</au><au>Linke, B. S.</au><au>Hill, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>61</volume><issue>8</issue><spage>1309</spage><epage>1322</epage><pages>1309-1322</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>Background While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts. Methods The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin 2 (ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample. Results Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin 2 (ψ) XRD. At shallow depths (&lt; 0.03 mm), sin 2 (ψ) XRD data have the best repeatability (&lt; 15 MPa), but at larger depths (&gt; 0.04 mm) hole-drilling and slotting have the best repeatability (&lt; 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed. Conclusion Hole-drilling, slotting, and sin 2 (ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-021-00734-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9168-211X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4851
ispartof Experimental mechanics, 2021-10, Vol.61 (8), p.1309-1322
issn 0014-4851
1741-2765
language eng
recordid cdi_proquest_journals_2587069667
source SpringerLink Journals - AutoHoldings
subjects Aluminum
Biomedical Engineering and Bioengineering
Characterization and Evaluation of Materials
Control
Cutting speed
Distortion
Drilling
Dynamical Systems
Engineering
Evaluation
Flat surfaces
Lasers
Optical Devices
Optics
Photonics
Reproducibility
Research Paper
Residual stress
Solid Mechanics
Stress analysis
Vibration
X-ray diffraction
title Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermethod%20Comparison%20and%20Evaluation%20of%20Measured%20Near%20Surface%20Residual%20Stress%20in%20Milled%20Aluminum&rft.jtitle=Experimental%20mechanics&rft.au=Chighizola,%20C.%20R.&rft.date=2021-10-01&rft.volume=61&rft.issue=8&rft.spage=1309&rft.epage=1322&rft.pages=1309-1322&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-021-00734-5&rft_dat=%3Cproquest_cross%3E2587069667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587069667&rft_id=info:pmid/&rfr_iscdi=true