Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors

Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-10, Vol.13 (41), p.17442-17456
Hauptverfasser: Chang, Xinwei, Liu, Tingting, Li, Weilong, He, Mi, Ren, Zhaoyu, Bai, Jintao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17456
container_issue 41
container_start_page 17442
container_title Nanoscale
container_volume 13
creator Chang, Xinwei
Liu, Tingting
Li, Weilong
He, Mi
Ren, Zhaoyu
Bai, Jintao
description Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed self-standing NiCoP nanowires and Fe doped NiCoP nanoarrays with different iron ion concentrations on nickel foam (Fe-NiCoP/NF- x %, x = 4, 6.25, 12.5, 25) as a positive electrode for asymmetric supercapacitors (ASCs). The morphological result reveals that the nanostructure of the material evolves from nanowires to nanosheets with the iron doping concentration, and the Fe-NiCoP/NF-12.5% nanosheets possess a more stable structure than NiCoP/NF nanowires. The density functional theory analysis implies that the conductivity of the material enhances after Fe doping because of the increased charge density and electron states. The combination of multicomponents and structural advantages endows the optimal Fe-NiCoP/NF-12.5% electrode with an ultrahigh areal capacitance of 9.93 F cm −2 (2758.34 F cm −3 ) under 1 mA cm −2 , excellent rate capability (82.58% from 1 mA cm −2 to 50 mA cm −2 ) and superior cycling stability (95.72% retention over 5000 cycles under 20 mA cm −2 ), and the areal capacitance of Fe-NiCoP/NF-12.5% is 2.27 times higher than that of the pristine NiCoP/NF electrode at 1 mA cm −2 . Moreover, the assembled Fe-NiCoP/NF-12.5%//activated carbon ASC device delivers a high energy density of 0.327 mW h cm −2 (60.43 mW h cm −3 ) at 1.10 mW cm −2 (202.54 mW cm −3 ). Therefore, this strategy may provide a novel route for the application of NiCoP with its intrinsic advantages in the energy storage field. The dual advantages of stable morphology and enhanced electric conductivity of NiCoP by Fe doping endow the optimal Fe-NiCoP/NF-12.5% electrode with prominent cycling stability and rate performance.
doi_str_mv 10.1039/d1nr04783c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2586989440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586989440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-64c5152e557b576b42b7152ec562027352c9cee15c66794573d7fa0da1281303</originalsourceid><addsrcrecordid>eNpdkUtr3DAUhU1JoUnaTfeBC92UwLR6y16GyasQ0lKyN7J8PaNEIzmSXJi_019aO1NS6Oo--M65F05VfaTkCyW8-drTkIjQNbdvqmNGBFlxrtnRa6_Eu-ok50dCVMMVP65-X07Gwy72kzfFxQBxgLLFeZPGbfRxswcTekCPtiRnwcbQT7a4X67sF_bereMPmHXB2Sf0MESzg24P1wh9HF3YgMlgIE8jJhcT5GI65xfxwTL2OGsSbN1mCxgwzQdfYGtGY12JKb-v3g7GZ_zwt55WD9dXD-vb1d33m2_ri7uV5VSUlRJWUslQSt1JrTrBOr3MVipGmOaS2cYiUmmV0o2Qmvd6MKQ3lNWUE35afT7Yjik-T5hLu3PZovcmYJxyy2TNKCU1a2b003_oY5xSmJ9bKNXUjRCL4fmBsinmnHBox-R2Ju1bStolrfaS3v98SWs9w2cHOGX7yv1Lk_8BzGeSzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586989440</pqid></control><display><type>article</type><title>Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chang, Xinwei ; Liu, Tingting ; Li, Weilong ; He, Mi ; Ren, Zhaoyu ; Bai, Jintao</creator><creatorcontrib>Chang, Xinwei ; Liu, Tingting ; Li, Weilong ; He, Mi ; Ren, Zhaoyu ; Bai, Jintao</creatorcontrib><description>Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed self-standing NiCoP nanowires and Fe doped NiCoP nanoarrays with different iron ion concentrations on nickel foam (Fe-NiCoP/NF- x %, x = 4, 6.25, 12.5, 25) as a positive electrode for asymmetric supercapacitors (ASCs). The morphological result reveals that the nanostructure of the material evolves from nanowires to nanosheets with the iron doping concentration, and the Fe-NiCoP/NF-12.5% nanosheets possess a more stable structure than NiCoP/NF nanowires. The density functional theory analysis implies that the conductivity of the material enhances after Fe doping because of the increased charge density and electron states. The combination of multicomponents and structural advantages endows the optimal Fe-NiCoP/NF-12.5% electrode with an ultrahigh areal capacitance of 9.93 F cm −2 (2758.34 F cm −3 ) under 1 mA cm −2 , excellent rate capability (82.58% from 1 mA cm −2 to 50 mA cm −2 ) and superior cycling stability (95.72% retention over 5000 cycles under 20 mA cm −2 ), and the areal capacitance of Fe-NiCoP/NF-12.5% is 2.27 times higher than that of the pristine NiCoP/NF electrode at 1 mA cm −2 . Moreover, the assembled Fe-NiCoP/NF-12.5%//activated carbon ASC device delivers a high energy density of 0.327 mW h cm −2 (60.43 mW h cm −3 ) at 1.10 mW cm −2 (202.54 mW cm −3 ). Therefore, this strategy may provide a novel route for the application of NiCoP with its intrinsic advantages in the energy storage field. The dual advantages of stable morphology and enhanced electric conductivity of NiCoP by Fe doping endow the optimal Fe-NiCoP/NF-12.5% electrode with prominent cycling stability and rate performance.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr04783c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Bimetals ; Capacitance ; Charge density ; Cycles ; Density functional theory ; Doping ; Electrical resistivity ; Electrode materials ; Electrodes ; Electron states ; Energy storage ; Flux density ; Iron ; Metal foams ; Morphology ; Nanostructure ; Nanowires ; Nickel ; Phosphides ; Stability ; Supercapacitors</subject><ispartof>Nanoscale, 2021-10, Vol.13 (41), p.17442-17456</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-64c5152e557b576b42b7152ec562027352c9cee15c66794573d7fa0da1281303</citedby><cites>FETCH-LOGICAL-c314t-64c5152e557b576b42b7152ec562027352c9cee15c66794573d7fa0da1281303</cites><orcidid>0000-0001-6665-6246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chang, Xinwei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Li, Weilong</creatorcontrib><creatorcontrib>He, Mi</creatorcontrib><creatorcontrib>Ren, Zhaoyu</creatorcontrib><creatorcontrib>Bai, Jintao</creatorcontrib><title>Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors</title><title>Nanoscale</title><description>Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed self-standing NiCoP nanowires and Fe doped NiCoP nanoarrays with different iron ion concentrations on nickel foam (Fe-NiCoP/NF- x %, x = 4, 6.25, 12.5, 25) as a positive electrode for asymmetric supercapacitors (ASCs). The morphological result reveals that the nanostructure of the material evolves from nanowires to nanosheets with the iron doping concentration, and the Fe-NiCoP/NF-12.5% nanosheets possess a more stable structure than NiCoP/NF nanowires. The density functional theory analysis implies that the conductivity of the material enhances after Fe doping because of the increased charge density and electron states. The combination of multicomponents and structural advantages endows the optimal Fe-NiCoP/NF-12.5% electrode with an ultrahigh areal capacitance of 9.93 F cm −2 (2758.34 F cm −3 ) under 1 mA cm −2 , excellent rate capability (82.58% from 1 mA cm −2 to 50 mA cm −2 ) and superior cycling stability (95.72% retention over 5000 cycles under 20 mA cm −2 ), and the areal capacitance of Fe-NiCoP/NF-12.5% is 2.27 times higher than that of the pristine NiCoP/NF electrode at 1 mA cm −2 . Moreover, the assembled Fe-NiCoP/NF-12.5%//activated carbon ASC device delivers a high energy density of 0.327 mW h cm −2 (60.43 mW h cm −3 ) at 1.10 mW cm −2 (202.54 mW cm −3 ). Therefore, this strategy may provide a novel route for the application of NiCoP with its intrinsic advantages in the energy storage field. The dual advantages of stable morphology and enhanced electric conductivity of NiCoP by Fe doping endow the optimal Fe-NiCoP/NF-12.5% electrode with prominent cycling stability and rate performance.</description><subject>Activated carbon</subject><subject>Bimetals</subject><subject>Capacitance</subject><subject>Charge density</subject><subject>Cycles</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron states</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Iron</subject><subject>Metal foams</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Phosphides</subject><subject>Stability</subject><subject>Supercapacitors</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr3DAUhU1JoUnaTfeBC92UwLR6y16GyasQ0lKyN7J8PaNEIzmSXJi_019aO1NS6Oo--M65F05VfaTkCyW8-drTkIjQNbdvqmNGBFlxrtnRa6_Eu-ok50dCVMMVP65-X07Gwy72kzfFxQBxgLLFeZPGbfRxswcTekCPtiRnwcbQT7a4X67sF_bereMPmHXB2Sf0MESzg24P1wh9HF3YgMlgIE8jJhcT5GI65xfxwTL2OGsSbN1mCxgwzQdfYGtGY12JKb-v3g7GZ_zwt55WD9dXD-vb1d33m2_ri7uV5VSUlRJWUslQSt1JrTrBOr3MVipGmOaS2cYiUmmV0o2Qmvd6MKQ3lNWUE35afT7Yjik-T5hLu3PZovcmYJxyy2TNKCU1a2b003_oY5xSmJ9bKNXUjRCL4fmBsinmnHBox-R2Ju1bStolrfaS3v98SWs9w2cHOGX7yv1Lk_8BzGeSzg</recordid><startdate>20211028</startdate><enddate>20211028</enddate><creator>Chang, Xinwei</creator><creator>Liu, Tingting</creator><creator>Li, Weilong</creator><creator>He, Mi</creator><creator>Ren, Zhaoyu</creator><creator>Bai, Jintao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6665-6246</orcidid></search><sort><creationdate>20211028</creationdate><title>Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors</title><author>Chang, Xinwei ; Liu, Tingting ; Li, Weilong ; He, Mi ; Ren, Zhaoyu ; Bai, Jintao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-64c5152e557b576b42b7152ec562027352c9cee15c66794573d7fa0da1281303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Bimetals</topic><topic>Capacitance</topic><topic>Charge density</topic><topic>Cycles</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron states</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Iron</topic><topic>Metal foams</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Phosphides</topic><topic>Stability</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Xinwei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Li, Weilong</creatorcontrib><creatorcontrib>He, Mi</creatorcontrib><creatorcontrib>Ren, Zhaoyu</creatorcontrib><creatorcontrib>Bai, Jintao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Xinwei</au><au>Liu, Tingting</au><au>Li, Weilong</au><au>He, Mi</au><au>Ren, Zhaoyu</au><au>Bai, Jintao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors</atitle><jtitle>Nanoscale</jtitle><date>2021-10-28</date><risdate>2021</risdate><volume>13</volume><issue>41</issue><spage>17442</spage><epage>17456</epage><pages>17442-17456</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed self-standing NiCoP nanowires and Fe doped NiCoP nanoarrays with different iron ion concentrations on nickel foam (Fe-NiCoP/NF- x %, x = 4, 6.25, 12.5, 25) as a positive electrode for asymmetric supercapacitors (ASCs). The morphological result reveals that the nanostructure of the material evolves from nanowires to nanosheets with the iron doping concentration, and the Fe-NiCoP/NF-12.5% nanosheets possess a more stable structure than NiCoP/NF nanowires. The density functional theory analysis implies that the conductivity of the material enhances after Fe doping because of the increased charge density and electron states. The combination of multicomponents and structural advantages endows the optimal Fe-NiCoP/NF-12.5% electrode with an ultrahigh areal capacitance of 9.93 F cm −2 (2758.34 F cm −3 ) under 1 mA cm −2 , excellent rate capability (82.58% from 1 mA cm −2 to 50 mA cm −2 ) and superior cycling stability (95.72% retention over 5000 cycles under 20 mA cm −2 ), and the areal capacitance of Fe-NiCoP/NF-12.5% is 2.27 times higher than that of the pristine NiCoP/NF electrode at 1 mA cm −2 . Moreover, the assembled Fe-NiCoP/NF-12.5%//activated carbon ASC device delivers a high energy density of 0.327 mW h cm −2 (60.43 mW h cm −3 ) at 1.10 mW cm −2 (202.54 mW cm −3 ). Therefore, this strategy may provide a novel route for the application of NiCoP with its intrinsic advantages in the energy storage field. The dual advantages of stable morphology and enhanced electric conductivity of NiCoP by Fe doping endow the optimal Fe-NiCoP/NF-12.5% electrode with prominent cycling stability and rate performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr04783c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6665-6246</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-10, Vol.13 (41), p.17442-17456
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2586989440
source Royal Society Of Chemistry Journals 2008-
subjects Activated carbon
Bimetals
Capacitance
Charge density
Cycles
Density functional theory
Doping
Electrical resistivity
Electrode materials
Electrodes
Electron states
Energy storage
Flux density
Iron
Metal foams
Morphology
Nanostructure
Nanowires
Nickel
Phosphides
Stability
Supercapacitors
title Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20modulation%20of%20the%20morphology%20and%20electric%20conductivity%20of%20NiCoP%20on%20nickel%20foam%20by%20Fe%20doping%20as%20a%20superior%20stability%20electrode%20for%20high%20energy%20supercapacitors&rft.jtitle=Nanoscale&rft.au=Chang,%20Xinwei&rft.date=2021-10-28&rft.volume=13&rft.issue=41&rft.spage=17442&rft.epage=17456&rft.pages=17442-17456&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr04783c&rft_dat=%3Cproquest_cross%3E2586989440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586989440&rft_id=info:pmid/&rfr_iscdi=true