Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors
Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed sel...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-10, Vol.13 (41), p.17442-17456 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17456 |
---|---|
container_issue | 41 |
container_start_page | 17442 |
container_title | Nanoscale |
container_volume | 13 |
creator | Chang, Xinwei Liu, Tingting Li, Weilong He, Mi Ren, Zhaoyu Bai, Jintao |
description | Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed self-standing NiCoP nanowires and Fe doped NiCoP nanoarrays with different iron ion concentrations on nickel foam (Fe-NiCoP/NF-
x
%,
x
= 4, 6.25, 12.5, 25) as a positive electrode for asymmetric supercapacitors (ASCs). The morphological result reveals that the nanostructure of the material evolves from nanowires to nanosheets with the iron doping concentration, and the Fe-NiCoP/NF-12.5% nanosheets possess a more stable structure than NiCoP/NF nanowires. The density functional theory analysis implies that the conductivity of the material enhances after Fe doping because of the increased charge density and electron states. The combination of multicomponents and structural advantages endows the optimal Fe-NiCoP/NF-12.5% electrode with an ultrahigh areal capacitance of 9.93 F cm
−2
(2758.34 F cm
−3
) under 1 mA cm
−2
, excellent rate capability (82.58% from 1 mA cm
−2
to 50 mA cm
−2
) and superior cycling stability (95.72% retention over 5000 cycles under 20 mA cm
−2
), and the areal capacitance of Fe-NiCoP/NF-12.5% is 2.27 times higher than that of the pristine NiCoP/NF electrode at 1 mA cm
−2
. Moreover, the assembled Fe-NiCoP/NF-12.5%//activated carbon ASC device delivers a high energy density of 0.327 mW h cm
−2
(60.43 mW h cm
−3
) at 1.10 mW cm
−2
(202.54 mW cm
−3
). Therefore, this strategy may provide a novel route for the application of NiCoP with its intrinsic advantages in the energy storage field.
The dual advantages of stable morphology and enhanced electric conductivity of NiCoP by Fe doping endow the optimal Fe-NiCoP/NF-12.5% electrode with prominent cycling stability and rate performance. |
doi_str_mv | 10.1039/d1nr04783c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2586989440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586989440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-64c5152e557b576b42b7152ec562027352c9cee15c66794573d7fa0da1281303</originalsourceid><addsrcrecordid>eNpdkUtr3DAUhU1JoUnaTfeBC92UwLR6y16GyasQ0lKyN7J8PaNEIzmSXJi_019aO1NS6Oo--M65F05VfaTkCyW8-drTkIjQNbdvqmNGBFlxrtnRa6_Eu-ok50dCVMMVP65-X07Gwy72kzfFxQBxgLLFeZPGbfRxswcTekCPtiRnwcbQT7a4X67sF_bereMPmHXB2Sf0MESzg24P1wh9HF3YgMlgIE8jJhcT5GI65xfxwTL2OGsSbN1mCxgwzQdfYGtGY12JKb-v3g7GZ_zwt55WD9dXD-vb1d33m2_ri7uV5VSUlRJWUslQSt1JrTrBOr3MVipGmOaS2cYiUmmV0o2Qmvd6MKQ3lNWUE35afT7Yjik-T5hLu3PZovcmYJxyy2TNKCU1a2b003_oY5xSmJ9bKNXUjRCL4fmBsinmnHBox-R2Ju1bStolrfaS3v98SWs9w2cHOGX7yv1Lk_8BzGeSzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586989440</pqid></control><display><type>article</type><title>Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chang, Xinwei ; Liu, Tingting ; Li, Weilong ; He, Mi ; Ren, Zhaoyu ; Bai, Jintao</creator><creatorcontrib>Chang, Xinwei ; Liu, Tingting ; Li, Weilong ; He, Mi ; Ren, Zhaoyu ; Bai, Jintao</creatorcontrib><description>Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed self-standing NiCoP nanowires and Fe doped NiCoP nanoarrays with different iron ion concentrations on nickel foam (Fe-NiCoP/NF-
x
%,
x
= 4, 6.25, 12.5, 25) as a positive electrode for asymmetric supercapacitors (ASCs). The morphological result reveals that the nanostructure of the material evolves from nanowires to nanosheets with the iron doping concentration, and the Fe-NiCoP/NF-12.5% nanosheets possess a more stable structure than NiCoP/NF nanowires. The density functional theory analysis implies that the conductivity of the material enhances after Fe doping because of the increased charge density and electron states. The combination of multicomponents and structural advantages endows the optimal Fe-NiCoP/NF-12.5% electrode with an ultrahigh areal capacitance of 9.93 F cm
−2
(2758.34 F cm
−3
) under 1 mA cm
−2
, excellent rate capability (82.58% from 1 mA cm
−2
to 50 mA cm
−2
) and superior cycling stability (95.72% retention over 5000 cycles under 20 mA cm
−2
), and the areal capacitance of Fe-NiCoP/NF-12.5% is 2.27 times higher than that of the pristine NiCoP/NF electrode at 1 mA cm
−2
. Moreover, the assembled Fe-NiCoP/NF-12.5%//activated carbon ASC device delivers a high energy density of 0.327 mW h cm
−2
(60.43 mW h cm
−3
) at 1.10 mW cm
−2
(202.54 mW cm
−3
). Therefore, this strategy may provide a novel route for the application of NiCoP with its intrinsic advantages in the energy storage field.
The dual advantages of stable morphology and enhanced electric conductivity of NiCoP by Fe doping endow the optimal Fe-NiCoP/NF-12.5% electrode with prominent cycling stability and rate performance.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr04783c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activated carbon ; Bimetals ; Capacitance ; Charge density ; Cycles ; Density functional theory ; Doping ; Electrical resistivity ; Electrode materials ; Electrodes ; Electron states ; Energy storage ; Flux density ; Iron ; Metal foams ; Morphology ; Nanostructure ; Nanowires ; Nickel ; Phosphides ; Stability ; Supercapacitors</subject><ispartof>Nanoscale, 2021-10, Vol.13 (41), p.17442-17456</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-64c5152e557b576b42b7152ec562027352c9cee15c66794573d7fa0da1281303</citedby><cites>FETCH-LOGICAL-c314t-64c5152e557b576b42b7152ec562027352c9cee15c66794573d7fa0da1281303</cites><orcidid>0000-0001-6665-6246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chang, Xinwei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Li, Weilong</creatorcontrib><creatorcontrib>He, Mi</creatorcontrib><creatorcontrib>Ren, Zhaoyu</creatorcontrib><creatorcontrib>Bai, Jintao</creatorcontrib><title>Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors</title><title>Nanoscale</title><description>Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed self-standing NiCoP nanowires and Fe doped NiCoP nanoarrays with different iron ion concentrations on nickel foam (Fe-NiCoP/NF-
x
%,
x
= 4, 6.25, 12.5, 25) as a positive electrode for asymmetric supercapacitors (ASCs). The morphological result reveals that the nanostructure of the material evolves from nanowires to nanosheets with the iron doping concentration, and the Fe-NiCoP/NF-12.5% nanosheets possess a more stable structure than NiCoP/NF nanowires. The density functional theory analysis implies that the conductivity of the material enhances after Fe doping because of the increased charge density and electron states. The combination of multicomponents and structural advantages endows the optimal Fe-NiCoP/NF-12.5% electrode with an ultrahigh areal capacitance of 9.93 F cm
−2
(2758.34 F cm
−3
) under 1 mA cm
−2
, excellent rate capability (82.58% from 1 mA cm
−2
to 50 mA cm
−2
) and superior cycling stability (95.72% retention over 5000 cycles under 20 mA cm
−2
), and the areal capacitance of Fe-NiCoP/NF-12.5% is 2.27 times higher than that of the pristine NiCoP/NF electrode at 1 mA cm
−2
. Moreover, the assembled Fe-NiCoP/NF-12.5%//activated carbon ASC device delivers a high energy density of 0.327 mW h cm
−2
(60.43 mW h cm
−3
) at 1.10 mW cm
−2
(202.54 mW cm
−3
). Therefore, this strategy may provide a novel route for the application of NiCoP with its intrinsic advantages in the energy storage field.
The dual advantages of stable morphology and enhanced electric conductivity of NiCoP by Fe doping endow the optimal Fe-NiCoP/NF-12.5% electrode with prominent cycling stability and rate performance.</description><subject>Activated carbon</subject><subject>Bimetals</subject><subject>Capacitance</subject><subject>Charge density</subject><subject>Cycles</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron states</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Iron</subject><subject>Metal foams</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Phosphides</subject><subject>Stability</subject><subject>Supercapacitors</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr3DAUhU1JoUnaTfeBC92UwLR6y16GyasQ0lKyN7J8PaNEIzmSXJi_019aO1NS6Oo--M65F05VfaTkCyW8-drTkIjQNbdvqmNGBFlxrtnRa6_Eu-ok50dCVMMVP65-X07Gwy72kzfFxQBxgLLFeZPGbfRxswcTekCPtiRnwcbQT7a4X67sF_bereMPmHXB2Sf0MESzg24P1wh9HF3YgMlgIE8jJhcT5GI65xfxwTL2OGsSbN1mCxgwzQdfYGtGY12JKb-v3g7GZ_zwt55WD9dXD-vb1d33m2_ri7uV5VSUlRJWUslQSt1JrTrBOr3MVipGmOaS2cYiUmmV0o2Qmvd6MKQ3lNWUE35afT7Yjik-T5hLu3PZovcmYJxyy2TNKCU1a2b003_oY5xSmJ9bKNXUjRCL4fmBsinmnHBox-R2Ju1bStolrfaS3v98SWs9w2cHOGX7yv1Lk_8BzGeSzg</recordid><startdate>20211028</startdate><enddate>20211028</enddate><creator>Chang, Xinwei</creator><creator>Liu, Tingting</creator><creator>Li, Weilong</creator><creator>He, Mi</creator><creator>Ren, Zhaoyu</creator><creator>Bai, Jintao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6665-6246</orcidid></search><sort><creationdate>20211028</creationdate><title>Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors</title><author>Chang, Xinwei ; Liu, Tingting ; Li, Weilong ; He, Mi ; Ren, Zhaoyu ; Bai, Jintao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-64c5152e557b576b42b7152ec562027352c9cee15c66794573d7fa0da1281303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Bimetals</topic><topic>Capacitance</topic><topic>Charge density</topic><topic>Cycles</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron states</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Iron</topic><topic>Metal foams</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Phosphides</topic><topic>Stability</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Xinwei</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Li, Weilong</creatorcontrib><creatorcontrib>He, Mi</creatorcontrib><creatorcontrib>Ren, Zhaoyu</creatorcontrib><creatorcontrib>Bai, Jintao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Xinwei</au><au>Liu, Tingting</au><au>Li, Weilong</au><au>He, Mi</au><au>Ren, Zhaoyu</au><au>Bai, Jintao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors</atitle><jtitle>Nanoscale</jtitle><date>2021-10-28</date><risdate>2021</risdate><volume>13</volume><issue>41</issue><spage>17442</spage><epage>17456</epage><pages>17442-17456</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Nickel-cobalt bimetallic phosphide (NiCoP) is a potential electrode material for supercapacitors on account of its high theoretical specific capacitance. However, its practical application is restricted because of its relatively poor cycling stability and rate performance. Herein, we constructed self-standing NiCoP nanowires and Fe doped NiCoP nanoarrays with different iron ion concentrations on nickel foam (Fe-NiCoP/NF-
x
%,
x
= 4, 6.25, 12.5, 25) as a positive electrode for asymmetric supercapacitors (ASCs). The morphological result reveals that the nanostructure of the material evolves from nanowires to nanosheets with the iron doping concentration, and the Fe-NiCoP/NF-12.5% nanosheets possess a more stable structure than NiCoP/NF nanowires. The density functional theory analysis implies that the conductivity of the material enhances after Fe doping because of the increased charge density and electron states. The combination of multicomponents and structural advantages endows the optimal Fe-NiCoP/NF-12.5% electrode with an ultrahigh areal capacitance of 9.93 F cm
−2
(2758.34 F cm
−3
) under 1 mA cm
−2
, excellent rate capability (82.58% from 1 mA cm
−2
to 50 mA cm
−2
) and superior cycling stability (95.72% retention over 5000 cycles under 20 mA cm
−2
), and the areal capacitance of Fe-NiCoP/NF-12.5% is 2.27 times higher than that of the pristine NiCoP/NF electrode at 1 mA cm
−2
. Moreover, the assembled Fe-NiCoP/NF-12.5%//activated carbon ASC device delivers a high energy density of 0.327 mW h cm
−2
(60.43 mW h cm
−3
) at 1.10 mW cm
−2
(202.54 mW cm
−3
). Therefore, this strategy may provide a novel route for the application of NiCoP with its intrinsic advantages in the energy storage field.
The dual advantages of stable morphology and enhanced electric conductivity of NiCoP by Fe doping endow the optimal Fe-NiCoP/NF-12.5% electrode with prominent cycling stability and rate performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr04783c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6665-6246</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-10, Vol.13 (41), p.17442-17456 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_journals_2586989440 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Activated carbon Bimetals Capacitance Charge density Cycles Density functional theory Doping Electrical resistivity Electrode materials Electrodes Electron states Energy storage Flux density Iron Metal foams Morphology Nanostructure Nanowires Nickel Phosphides Stability Supercapacitors |
title | Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20modulation%20of%20the%20morphology%20and%20electric%20conductivity%20of%20NiCoP%20on%20nickel%20foam%20by%20Fe%20doping%20as%20a%20superior%20stability%20electrode%20for%20high%20energy%20supercapacitors&rft.jtitle=Nanoscale&rft.au=Chang,%20Xinwei&rft.date=2021-10-28&rft.volume=13&rft.issue=41&rft.spage=17442&rft.epage=17456&rft.pages=17442-17456&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr04783c&rft_dat=%3Cproquest_cross%3E2586989440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586989440&rft_id=info:pmid/&rfr_iscdi=true |