Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems

We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2021-11, Vol.39 (21), p.6833-6844
Hauptverfasser: Nevin, Josh W., Vaquero-Caballero, F. J., Ives, David. J., Savory, Seb J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6844
container_issue 21
container_start_page 6833
container_title Journal of lightwave technology
container_volume 39
creator Nevin, Josh W.
Vaquero-Caballero, F. J.
Ives, David. J.
Savory, Seb J.
description We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed.
doi_str_mv 10.1109/JLT.2021.3106714
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2586594530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9521808</ieee_id><sourcerecordid>2586594530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cf9303a52c0c648a8f92e5e5ea82f73e3ef892235fcaffa310e56eebd4d40883</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z87maPUmytFFp07yFNJ5rS3dRk99D_3pQWmcODmfdmmB9Cj5RMKCX1y8eymTDC6IRTUlZUXKERlVIVjFF-jUak4rxQFRO36C6lHSFUCFWNULP-OSZvU7HoXIgtbPHcDCl50-F1DBZSwp_wHbP60OFswatD763Z45nfQMTT0LZDlxv9af51TD206R7dOLNP8HDRMWpmb830vViu5ovp67KwXJG-sK7mhBvJLLGlUEa5moHMZRRzFQcOTtWMcemscc7kx0CWAJut2AqiFB-j5_PaQwy_A6Re78IQu3xRM6lKWQuZ948RObtsDClFcPoQfWviUVOiT-h0RqdP6PQFXY48nSMeAP7ttWRUEcX_AKXPayM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586594530</pqid></control><display><type>article</type><title>Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Nevin, Josh W. ; Vaquero-Caballero, F. J. ; Ives, David. J. ; Savory, Seb J.</creator><creatorcontrib>Nevin, Josh W. ; Vaquero-Caballero, F. J. ; Ives, David. J. ; Savory, Seb J.</creatorcontrib><description>We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3106714</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Communications systems ; Data points ; data-centric engineering ; explainable machine learning ; Gaussian process ; Gaussian processes ; Kernel ; Machine learning ; Mathematical model ; Optical communication ; Optical data processing ; Optical fiber communication ; Optical fiber networks ; Optical fibers ; Physics ; Predictive models ; Regression ; Statistical inference ; Uncertainty</subject><ispartof>Journal of lightwave technology, 2021-11, Vol.39 (21), p.6833-6844</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cf9303a52c0c648a8f92e5e5ea82f73e3ef892235fcaffa310e56eebd4d40883</citedby><cites>FETCH-LOGICAL-c380t-cf9303a52c0c648a8f92e5e5ea82f73e3ef892235fcaffa310e56eebd4d40883</cites><orcidid>0000-0002-9603-4285 ; 0000-0002-6067-6892 ; 0000-0002-6803-718X ; 0000-0002-2482-7032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9521808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9521808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nevin, Josh W.</creatorcontrib><creatorcontrib>Vaquero-Caballero, F. J.</creatorcontrib><creatorcontrib>Ives, David. J.</creatorcontrib><creatorcontrib>Savory, Seb J.</creatorcontrib><title>Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed.</description><subject>Bayesian analysis</subject><subject>Communications systems</subject><subject>Data points</subject><subject>data-centric engineering</subject><subject>explainable machine learning</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Optical communication</subject><subject>Optical data processing</subject><subject>Optical fiber communication</subject><subject>Optical fiber networks</subject><subject>Optical fibers</subject><subject>Physics</subject><subject>Predictive models</subject><subject>Regression</subject><subject>Statistical inference</subject><subject>Uncertainty</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z87maPUmytFFp07yFNJ5rS3dRk99D_3pQWmcODmfdmmB9Cj5RMKCX1y8eymTDC6IRTUlZUXKERlVIVjFF-jUak4rxQFRO36C6lHSFUCFWNULP-OSZvU7HoXIgtbPHcDCl50-F1DBZSwp_wHbP60OFswatD763Z45nfQMTT0LZDlxv9af51TD206R7dOLNP8HDRMWpmb830vViu5ovp67KwXJG-sK7mhBvJLLGlUEa5moHMZRRzFQcOTtWMcemscc7kx0CWAJut2AqiFB-j5_PaQwy_A6Re78IQu3xRM6lKWQuZ948RObtsDClFcPoQfWviUVOiT-h0RqdP6PQFXY48nSMeAP7ttWRUEcX_AKXPayM</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Nevin, Josh W.</creator><creator>Vaquero-Caballero, F. J.</creator><creator>Ives, David. J.</creator><creator>Savory, Seb J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9603-4285</orcidid><orcidid>https://orcid.org/0000-0002-6067-6892</orcidid><orcidid>https://orcid.org/0000-0002-6803-718X</orcidid><orcidid>https://orcid.org/0000-0002-2482-7032</orcidid></search><sort><creationdate>20211101</creationdate><title>Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems</title><author>Nevin, Josh W. ; Vaquero-Caballero, F. J. ; Ives, David. J. ; Savory, Seb J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cf9303a52c0c648a8f92e5e5ea82f73e3ef892235fcaffa310e56eebd4d40883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Communications systems</topic><topic>Data points</topic><topic>data-centric engineering</topic><topic>explainable machine learning</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Optical communication</topic><topic>Optical data processing</topic><topic>Optical fiber communication</topic><topic>Optical fiber networks</topic><topic>Optical fibers</topic><topic>Physics</topic><topic>Predictive models</topic><topic>Regression</topic><topic>Statistical inference</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nevin, Josh W.</creatorcontrib><creatorcontrib>Vaquero-Caballero, F. J.</creatorcontrib><creatorcontrib>Ives, David. J.</creatorcontrib><creatorcontrib>Savory, Seb J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nevin, Josh W.</au><au>Vaquero-Caballero, F. J.</au><au>Ives, David. J.</au><au>Savory, Seb J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>39</volume><issue>21</issue><spage>6833</spage><epage>6844</epage><pages>6833-6844</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3106714</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9603-4285</orcidid><orcidid>https://orcid.org/0000-0002-6067-6892</orcidid><orcidid>https://orcid.org/0000-0002-6803-718X</orcidid><orcidid>https://orcid.org/0000-0002-2482-7032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-11, Vol.39 (21), p.6833-6844
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2586594530
source IEEE Electronic Library (IEL)
subjects Bayesian analysis
Communications systems
Data points
data-centric engineering
explainable machine learning
Gaussian process
Gaussian processes
Kernel
Machine learning
Mathematical model
Optical communication
Optical data processing
Optical fiber communication
Optical fiber networks
Optical fibers
Physics
Predictive models
Regression
Statistical inference
Uncertainty
title Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Informed%20Gaussian%20Process%20Regression%20for%20Optical%20Fiber%20Communication%20Systems&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Nevin,%20Josh%20W.&rft.date=2021-11-01&rft.volume=39&rft.issue=21&rft.spage=6833&rft.epage=6844&rft.pages=6833-6844&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3106714&rft_dat=%3Cproquest_RIE%3E2586594530%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586594530&rft_id=info:pmid/&rft_ieee_id=9521808&rfr_iscdi=true