Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems
We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets der...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2021-11, Vol.39 (21), p.6833-6844 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6844 |
---|---|
container_issue | 21 |
container_start_page | 6833 |
container_title | Journal of lightwave technology |
container_volume | 39 |
creator | Nevin, Josh W. Vaquero-Caballero, F. J. Ives, David. J. Savory, Seb J. |
description | We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed. |
doi_str_mv | 10.1109/JLT.2021.3106714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2586594530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9521808</ieee_id><sourcerecordid>2586594530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cf9303a52c0c648a8f92e5e5ea82f73e3ef892235fcaffa310e56eebd4d40883</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z87maPUmytFFp07yFNJ5rS3dRk99D_3pQWmcODmfdmmB9Cj5RMKCX1y8eymTDC6IRTUlZUXKERlVIVjFF-jUak4rxQFRO36C6lHSFUCFWNULP-OSZvU7HoXIgtbPHcDCl50-F1DBZSwp_wHbP60OFswatD763Z45nfQMTT0LZDlxv9af51TD206R7dOLNP8HDRMWpmb830vViu5ovp67KwXJG-sK7mhBvJLLGlUEa5moHMZRRzFQcOTtWMcemscc7kx0CWAJut2AqiFB-j5_PaQwy_A6Re78IQu3xRM6lKWQuZ948RObtsDClFcPoQfWviUVOiT-h0RqdP6PQFXY48nSMeAP7ttWRUEcX_AKXPayM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586594530</pqid></control><display><type>article</type><title>Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Nevin, Josh W. ; Vaquero-Caballero, F. J. ; Ives, David. J. ; Savory, Seb J.</creator><creatorcontrib>Nevin, Josh W. ; Vaquero-Caballero, F. J. ; Ives, David. J. ; Savory, Seb J.</creatorcontrib><description>We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3106714</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayesian analysis ; Communications systems ; Data points ; data-centric engineering ; explainable machine learning ; Gaussian process ; Gaussian processes ; Kernel ; Machine learning ; Mathematical model ; Optical communication ; Optical data processing ; Optical fiber communication ; Optical fiber networks ; Optical fibers ; Physics ; Predictive models ; Regression ; Statistical inference ; Uncertainty</subject><ispartof>Journal of lightwave technology, 2021-11, Vol.39 (21), p.6833-6844</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cf9303a52c0c648a8f92e5e5ea82f73e3ef892235fcaffa310e56eebd4d40883</citedby><cites>FETCH-LOGICAL-c380t-cf9303a52c0c648a8f92e5e5ea82f73e3ef892235fcaffa310e56eebd4d40883</cites><orcidid>0000-0002-9603-4285 ; 0000-0002-6067-6892 ; 0000-0002-6803-718X ; 0000-0002-2482-7032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9521808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9521808$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nevin, Josh W.</creatorcontrib><creatorcontrib>Vaquero-Caballero, F. J.</creatorcontrib><creatorcontrib>Ives, David. J.</creatorcontrib><creatorcontrib>Savory, Seb J.</creatorcontrib><title>Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed.</description><subject>Bayesian analysis</subject><subject>Communications systems</subject><subject>Data points</subject><subject>data-centric engineering</subject><subject>explainable machine learning</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Mathematical model</subject><subject>Optical communication</subject><subject>Optical data processing</subject><subject>Optical fiber communication</subject><subject>Optical fiber networks</subject><subject>Optical fibers</subject><subject>Physics</subject><subject>Predictive models</subject><subject>Regression</subject><subject>Statistical inference</subject><subject>Uncertainty</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89Z87maPUmytFFp07yFNJ5rS3dRk99D_3pQWmcODmfdmmB9Cj5RMKCX1y8eymTDC6IRTUlZUXKERlVIVjFF-jUak4rxQFRO36C6lHSFUCFWNULP-OSZvU7HoXIgtbPHcDCl50-F1DBZSwp_wHbP60OFswatD763Z45nfQMTT0LZDlxv9af51TD206R7dOLNP8HDRMWpmb830vViu5ovp67KwXJG-sK7mhBvJLLGlUEa5moHMZRRzFQcOTtWMcemscc7kx0CWAJut2AqiFB-j5_PaQwy_A6Re78IQu3xRM6lKWQuZ948RObtsDClFcPoQfWviUVOiT-h0RqdP6PQFXY48nSMeAP7ttWRUEcX_AKXPayM</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Nevin, Josh W.</creator><creator>Vaquero-Caballero, F. J.</creator><creator>Ives, David. J.</creator><creator>Savory, Seb J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9603-4285</orcidid><orcidid>https://orcid.org/0000-0002-6067-6892</orcidid><orcidid>https://orcid.org/0000-0002-6803-718X</orcidid><orcidid>https://orcid.org/0000-0002-2482-7032</orcidid></search><sort><creationdate>20211101</creationdate><title>Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems</title><author>Nevin, Josh W. ; Vaquero-Caballero, F. J. ; Ives, David. J. ; Savory, Seb J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cf9303a52c0c648a8f92e5e5ea82f73e3ef892235fcaffa310e56eebd4d40883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Communications systems</topic><topic>Data points</topic><topic>data-centric engineering</topic><topic>explainable machine learning</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Mathematical model</topic><topic>Optical communication</topic><topic>Optical data processing</topic><topic>Optical fiber communication</topic><topic>Optical fiber networks</topic><topic>Optical fibers</topic><topic>Physics</topic><topic>Predictive models</topic><topic>Regression</topic><topic>Statistical inference</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nevin, Josh W.</creatorcontrib><creatorcontrib>Vaquero-Caballero, F. J.</creatorcontrib><creatorcontrib>Ives, David. J.</creatorcontrib><creatorcontrib>Savory, Seb J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nevin, Josh W.</au><au>Vaquero-Caballero, F. J.</au><au>Ives, David. J.</au><au>Savory, Seb J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>39</volume><issue>21</issue><spage>6833</spage><epage>6844</epage><pages>6833-6844</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We present a framework for enhancing Gaussian process regression machine learning models with a priori knowledge derived from models of the transmission physics in optical networks. This is done by framing the regression problem as multi-task learning, in which both the measured data and targets derived from a physical model of the system are used to optimise the kernel hyperparameters. We discuss the theoretical assumptions made and the validity of the approach. It is demonstrated that physics-informed Gaussian processes facilitate Bayesian inference with fewer data points than standard Gaussian processes, opening up application areas in which measurements are expensive. The transparency, interpretability and explainability of the proposed technique and the subsequent increased likelihood of adoption by industry are discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3106714</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9603-4285</orcidid><orcidid>https://orcid.org/0000-0002-6067-6892</orcidid><orcidid>https://orcid.org/0000-0002-6803-718X</orcidid><orcidid>https://orcid.org/0000-0002-2482-7032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2021-11, Vol.39 (21), p.6833-6844 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_2586594530 |
source | IEEE Electronic Library (IEL) |
subjects | Bayesian analysis Communications systems Data points data-centric engineering explainable machine learning Gaussian process Gaussian processes Kernel Machine learning Mathematical model Optical communication Optical data processing Optical fiber communication Optical fiber networks Optical fibers Physics Predictive models Regression Statistical inference Uncertainty |
title | Physics-Informed Gaussian Process Regression for Optical Fiber Communication Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Informed%20Gaussian%20Process%20Regression%20for%20Optical%20Fiber%20Communication%20Systems&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Nevin,%20Josh%20W.&rft.date=2021-11-01&rft.volume=39&rft.issue=21&rft.spage=6833&rft.epage=6844&rft.pages=6833-6844&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3106714&rft_dat=%3Cproquest_RIE%3E2586594530%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586594530&rft_id=info:pmid/&rft_ieee_id=9521808&rfr_iscdi=true |